

ECDC TECHNICAL REPORT

Systematic review update on the efficacy, effectiveness and safety of newer and enhanced seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals aged 18 years and over

This review was commissioned by the European Centre for Disease Prevention and Control (ECDC), as part of the activities of the ECDC's EU/EEA NITAG Collaboration, in close cooperation with the European Commission and the European Health and Digital Executive Agency (HaDEA). The commissioning and production of this review was coordinated by Karam Adel Ali (ECDC) and Kate Olsson (ECDC).

Authors:

Mona Askar, Madeleine Batke, Timo Brugger, Annika Falman, Irma Klerings, Wiebe Külper-Schiek, Joerg J Meerpohl, Vanessa Piechotta, Johanna Schlaberg, Christine Schmucker, Waldemar Siemens, Jan Stratil, EU/EEA NITAG Collaboration Influenza Working Group and ECDC representatives*, Thomas Harder.

* The EU/EEA NITAG Collaboration working group representatives are: Anna Hayman Robertson (NO), Jaime Jesús Pérez (ES), Kari Johansen (SE), Jorgen de Jonge (NL), Tyra Grove Krause (DK), Hanna Nohynek (FI), Carmen Olmedo (ES), Ioanna Pavlopoulou (GR), Johanna Rubin (SE), Veronika Učakar (SI), Ole Wichmann (DE). The following ECDC staff provided substantial input during the production/revision of the document (alphabetical order): Karam Adel Ali, Sabrina Bacci, Angeliki Melidou, Kate Olsson.

No conflicts of interest were reported by any member of the review team.

Acknowledgements

The authors would also like to thank the colleagues from the Irish Health Information and Quality Authority (HIQA), who conducted the primary review, for their support and for generously sharing their knowledge and data.

Disclaimer: This review was funded by the EU4Health Programme under a service contract with the European Health and Digital Executive Agency (HaDEA). The information and views set out in this review are those of the author(s) and do not necessarily reflect the official opinion of HaDEA or the European Commission. Neither HaDEA, the European Commission, nor any person acting on their behalf may be held responsible for any use which may be made of the information contained therein.

Erratum: On page 29, under the section 'Serious adverse events' the text stated that there were two cases of Guillain-Barré syndrome (GBS) in the MF59-adjuvanted vaccine group, which was incorrect. This text has now been corrected to read that there was one case of GBS in the standard vaccine group. In Table 22 (page 32) there was a missing row which has been updated and in Table 24 (page 39) in rows 3 and 4 the season dates were incorrect and have now been corrected. We apologise for any inconvenience these errors may have caused.

Suggested citation: European Centre for Disease Prevention and Control. Systematic review update on the efficacy, effectiveness and safety of newer and enhanced seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals aged 18 years and over. Stockholm: ECDC; 2024.

Stockholm, April 2024

ISBN 978-92-9498-705-1 doi: 10.2900/072225 Catalogue number TQ-09-24-184-EN-N

© European Centre for Disease Prevention and Control, 2024

Reproduction is authorised, provided the source is acknowledged

Contents

Abbreviations	
Executive summary	
Summary of findings	3
1. Background	7
2. Objectives	8
3. Review methods	9
3.1 Types of studies	9
3.2 Types of participants	
3.3 Types of interventions	
3.4 Types of comparators	
3.5 Types of outcome measures	
3.5.1 Timing of outcome measurement	9
3.5.2 Primary outcome measures	
3.5.3 Secondary outcome measures	
3.6 Search methods for identification of studies.	
3.6.1 Literature searches	
3.6.2 Searches for published studies	10
3.6.2 Searches for unpublished and ongoing studies	
3.6.3 Supplementary searches	
3.7 Data collection and analysis	
3.7.1 Study selection and management	
3.7.2 Data extraction	
3.7.3 Assessment of risk of bias in the studies included.	
3.7.4 Unit of analysis	
3.7.5 Dealing with missing data	12
3.7.6 Measures of treatment effect	
3.7.7 Assessment of heterogeneity	
3.7.8 Data synthesis	
3.7.9 Subgroup analysis	
3.7.10 Sensitivity analysis	13
3.8 Summary of findings and certainty of the evidence assessment	13
3.8.1 Summary of findings table	
3.8.2 Assessment of certainty in the evidence	
4. Review results	
4.1 Description of studies	
4.1.1 Results of the search	
4.1.2 Characteristics of included studies	
4.2 Risk of bias in the studies included	
4.2.1 Overall risk of bias by study	23
4.2.2 Overall risk of bias by outcome	
4.3 Effects of interventions	
4.3.1 MF59-adjuvanted influenza vaccine	
4.3.2 High-dose influenza vaccine	
4.3.3 Cell-based influenza vaccine	
4.3.4 Recombinant influenza vaccine	
4.3.5 mRNA-based influenza vaccine	
4.4 Subgroup analysis	
5. Discussion	
Overall completeness and applicability of evidence	
Certainty of the evidence	
Potential biases in the review process	
Agreements and disagreements with other studies or reviews	44
6. Conclusions	45
References	46
Anneyes	50

Figures

Figure 1. PRISMA flow diagram of update search	1 5
Figure 2. Relative risk of headache after vaccination with MF59-adjuvanted influenza vaccine	
Figure 3. Relative risk of headache after vaccination with MF59-adjuvanted influenza vaccine	
Figure 4. Relative risk of fever after vaccination with MF59-adjuvanted influenza vaccine	31
Figure 5. Relative risk of pain after vaccination with MF59-adjuvanted influenza vaccine	32
Figure 6. Relative risk of swelling after vaccination with MF59-adjuvanted influenza vaccine	
Figure 7. Relative risk of headache after vaccination with high-dose influenza vaccine	
Figure 8. Relative risk of fever after vaccination with high-dose influenza vaccine	
Figure 9. Relative risk of pain after vaccination with high-dose influenza vaccine	
Figure 10. Relative risk of swelling after vaccination with high-dose influenza vaccine	
Figure 11. Relative risk of headache after vaccination with cell-based influenza vaccine	
Figure 12. Relative risk of fever after vaccination with cell-based influenza vaccine	
Figure 13. Relative risk of pain after vaccination with cell-based influenza vaccine	
Figure 14. Relative risk of swelling after vaccination with cell-based influenza vaccine	40
Figure 15. Relative risk of headache after vaccination with recombinant influenza vaccine	
Figure 16. Relative risk of pain after vaccination with recombinant influenza vaccine	
Figure 17. Relative risk of swelling after vaccination with recombinant influenza vaccine	68
Figure 18. Funnel plot for safety outcome headache after vaccination with MF59-adjuvanted influenza vaccine $$	68
Figure 19. Funnel plot for safety outcome pain after vaccination with MF59-adjuvanted influenza vaccine	
Figure 20. Funnel plot for safety outcome headache after vaccination with high-dose influenza vaccine	
Figure 21. Funnel plot for safety outcome pain after vaccination with high-dose influenza vaccine	
Figure 22. Relative risk of headache after vaccination with MF59-adjuvanted influenza vaccine	
Figure 23. Relative risk of fever after vaccination with MF59-adjuvanted influenza vaccine	
Figure 24. Relative risk of pain after vaccination with MF59-adjuvanted influenza vaccine	
Figure 25. Relative risk of swelling after vaccination with MF59-adjuvanted influenza vaccine	
Figure 26. Relative risk of headache after vaccination with high-dose influenza vaccine	
Figure 27. Relative risk of fever after vaccination with high-dose influenza vaccine	
Figure 28. Relative risk of pain after vaccination with high-dose influenza vaccine	
Figure 29. Relative risk of swelling after vaccination with high-dose influenza vaccine	
Figure 30. Relative risk of headache after vaccination with cell-based influenza vaccine	
Figure 31. Relative risk of fever after vaccination with cell-based influenza vaccine	74
Figure 32. Relative risk of pain after vaccination with cell-based influenza vaccine	74
Figure 33. Relative risk of swelling after vaccination with cell-based influenza vaccine	75
Figure 34. Relative risk of headache after vaccination with recombinant influenza vaccine	
Figure 35. Relative risk of swelling after vaccination with recombinant influenza vaccine	
Tables	
Table 1. Summary of findings relative effectiveness and safety of MF59-adjuvanted influenza vaccine	3
Table 2. Summary of findings relative effectiveness and safety of high-dose influenza vaccine	4
Table 3. Summary of findings relative effectiveness and safety of cell-based influenza vaccine	
Table 4. Summary of findings relative effectiveness and safety of recombinant influenza vaccine	
Table 5. Key characteristics of vaccine efficacy/effectiveness studies of update	
Table 6. Key characteristics of vaccine efficacy/effectiveness studies of primary review, included in evidence body of update	
Table 7. Key characteristics of vaccine safety studies of update	
Table 8. Key characteristics of vaccine safety studies of primary review, included in evidence body of update	
Table 9. Risk of bias VE-studies (assessed with ROBINS-I); outcome: laboratory-confirmed influenza	
Table 10. Risk of bias in VE-studies (assessed with ROBINS-I); outcome: laboratory-confirmed hospitalisation	
Table 11. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: SAE (serious adverse events)	
Table 12. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: Pain	
Table 13. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: Swelling	
Table 14. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: Headache	
Table 15. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: Fever	
Table 16. Risk of bias in RCT safety-studies (assessed with RoB2); outcome: SAE (serious adverse events)	26
Table 17. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: Pain	26
Table 18. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: Swelling	
Table 19. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: Headache	
Table 20. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: Fever	
Table 21. Relative effectiveness of MF59-adjuvanted influenza vaccine	

Table 22. Relative vaccine effectiveness of high-dose versus standard influenza vaccine against laboratory-	
confirmed influenza and influenza-related hospitalisation	2
Table 23. Relative vaccine effectiveness of cell-based versus standard influenza vaccine influenza vaccine against	-
laboratory-confirmed influenza and influenza-related hospitalisation3	6
Table 24. Relative vaccine effectiveness of recombinant versus standard influenza vaccine against laboratory-	
confirmed influenza and influenza-related hospitalisation	9
Table 25. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: anaphylaxis6	2
Table 26. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: angioedema6	2
Table 27. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: asthma6	2
Table 28. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: death6	3
Table 29. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: encephalopathy6	3
Table 30. Risk of bias in NRSI on safety (assessed with ROBINS-I; outcome: idiopathic thrombocytopenic	
purpura/Henoch-Schönlein purpura6	3
Table 31. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: narcolepsy/cataplexy6	4
Table 32. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: non-infectious pleural effusion6	4
Table 33. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: acute non-infectious pericarditis6	4
Table 34. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: seizure/ convulsion6	5
Table 35. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: short-term mortality6	5
Table 36. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: AESI6	6
Table 37. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: death6	6

Abbreviations

AE Adverse event

AESI Adverse events of special interest

CI Confidence interval ED Emergency department

GRADE Grading of Recommendations, Assessment, Development and Evaluation

HD High-dose influenza vaccine
HSP Henoch-Schönlein purpura

ICU Intensive care unit

IP Inpatient

ITT Intention-to-treat

ITP Idiopathic thrombocytopenic purpura

mRNA messenger RNA

NITAG National Immunization Technical Advisory Group NRSI Non-randomised study of the effects of interventions

OR Odds Ratio

PCR Polymerase chain reaction

PRESS Peer Review of Electronic Search Strategies
PROSPERO Prospective Register of Systematic Reviews

RCT Randomised controlled trial

RoB Risk of Bias

ROBINS-I Risk Of Bias In Non-randomised Studies - of Interventions

RR Risk Ratio

rVE Relative vaccine effectiveness
SAE Serious adverse events

SD Standard-dose influenza vaccine (tri- or quadrivalent egg-based standard-dose influenza

vaccine containing 15 µg HA)

SoF Summary of findings

VE Vaccine efficacy/effectiveness WHO World Health Organization

Executive summary

Seasonal influenza is a respiratory infectious disease that spreads globally through annual epidemics and occasional pandemics. Vaccination is the most effective means for preventing influenza infection. However, the effectiveness of influenza vaccines varies to some degree from season to season, and is influenced by factors such as the health status and immune competence of the recipient, and the degree of match between circulating vaccine strains and the vaccine production process. The intrinsic factors that influence vaccine response result in the effectiveness of standard influenza vaccines being suboptimal in specific population groups. The response to standard influenza vaccine is reduced, especially among groups that are at higher risk of a severe disease outcome, such as the elderly and people with immunocompromising conditions. Therefore, in recent years, newer and/or enhanced influenza vaccines have been developed in an attempt to further improve vaccine effectiveness.

In 2020, ECDC conducted a systematic review of the efficacy, effectiveness and safety of newer and/or enhanced seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals aged 18 years and over, which covered literature up to 7 February 2020 (herein referred to as the primary review). In this report, we present an update of the 2020 primary systematic review, to take into account more recent evidence on the efficacy, effectiveness and safety of newer and/or enhanced seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals aged 18 years and over, with a search period from 1 January 2020 to 24 July 2023.

For this update a total of 1 561 new entries in databases were retrieved. After title/abstract and full-text screening, a total of 17 new studies (seven studies on efficacy/effectiveness, 10 studies on safety) were included in the updated review. These 17 newer studies were added to the 42 studies (10 studies on efficacy/effectiveness, 32 studies on safety) which were identified in the primary review, forming a total evidence body of 59 studies analysed. The current report describes the entire body of evidence from both the primary review and this update review. Risk of bias was assessed to be low-to-moderate in all efficacy/effectiveness studies and low-to-serious in safety studies.

Relative vaccine effectiveness (rVE) was used to describe the effect of the newer and/or enhanced influenza vaccines compared to the standard vaccines. We considered studies that reported data on at least one of the following newer and/or enhanced seasonal tri- or quadrivalent influenza vaccines:

- MF59-adjuvanted trivalent or quadrivalent vaccine¹;
- high-dose trivalent or quadrivalent inactivated vaccine²;
- trivalent or quadrivalent inactivated cell-based vaccine³;
- recombinant trivalent or quadrivalent HA vaccine⁴;
- quadrivalent mRNA-based vaccine⁵.

¹E.g. Fluad/Fluad Tetra, produced by Seqirus

²E.g. Fluzone/Fluzone Quadrivalent produced by Sanofi Pasteur

³E.g. Flucelvax/Flucelvax tetra produced by Seqirus

⁴E.g. Flublok/Flublok Quadrivalent produced by Sanofi Pasteur

⁵E.g. mRNA-1010 by Moderna, MRT5407 and MRT4113 by Sanofi Pasteur.

Valid comparators were standard influenza vaccines (tri- or quadrivalent egg-based standard-dose influenza vaccine) or one of the above-mentioned newer and/or enhanced seasonal tri- or quadrivalent influenza vaccines (i.e. head-to-head comparison between newer and/or enhanced vaccines).

For the MF59-adjuvanted vaccine, rVE estimates against laboratory-confirmed influenza (all strains) ranged between -30% (95%CI: -146 to 31%) and 88% (95%CI: 51 to 100) (seven non-randomised studies of the effects of interventions (NRSI); low certainty of evidence). Metanalysis was not performed due to the heterogeneity of the estimates. The rVE estimate against laboratory-confirmed influenza-related hospitalisation (all strains) was 59.2% (95%CI: 14.6 to 80.5%) (one NRSI; moderate certainty). No data were available for rVE against influenza-related death. No increased risk was detected for MF59-adjuvanted vaccine-related serious adverse events (three RCT, two NRSI; low certainty of evidence). Overall, for the MF59-adjuvanted vaccine, certainty was assessed as being low for the outcome laboratory-confirmed influenza and moderate for influenza-related hospitalisation. No assessment was possible for influenza-related death due to lack of data. For serious adverse events, certainty of evidence was low.

For the high-dose vaccine, the rVE estimate against laboratory-confirmed influenza (all strains) was 24.2% (95%CI: 9.7 to 36.5%) in one RCT (moderate certainty of evidence) and ranged from -9% (95%CI: -158 to 54%) to 19% (95%CI: -27 to 48%) in one NRSI, depending on the outcome. The rVE estimate against laboratory-confirmed influenza-related hospitalisation (all strains) was 27% (95%CI: -1 to 48%) (one NRSI; low certainty). No data were available for rVE against influenza-related death. No increased risk was detected for high-dose vaccine-related serious adverse events (six RCT, three NRSI; low certainty of evidence). Overall, for high-dose vaccine, certainty of evidence was moderate for the outcome laboratory-confirmed influenza. Certainty was assessed to be low for influenza-related hospitalisation. No assessment was possible for influenza-related death due to lack of data. For serious adverse events, certainty of evidence was low.

For the cell-based vaccine, rVE estimates against laboratory-confirmed influenza ranged from -5.8% (95%CI: -36.1 to 17.7%) (influenza A) to 21.4% (95%CI: -7.3 to 42.4%) (influenza B) (two NRSI; low certainty of evidence). The rVE estimate against laboratory-confirmed influenza-related hospitalisation (all strains) was 8.5% (95%CI: -75.9 to 52.3%) (one NRSI; low certainty of evidence). No data were available for rVE against influenza-related death. No increased risk was detected for cell-based vaccine-related serious adverse events (one RCT; low certainty of evidence). Overall, for the cell-based vaccine, certainty of evidence was low for the outcome laboratory-confirmed influenza. Certainty was low for influenza-related hospitalisation. No assessment was possible for influenza-related death due to lack of data. For serious adverse events, certainty of evidence was low.

For the recombinant vaccine, the rVE estimate against laboratory-confirmed influenza (all strains) was 30% (95%CI: 10 to 47%) in one RCT (moderate certainty of evidence) and ranged between 3% (95%CI: -31 to 28%) and 19% (95%CI: -27 to 48%) in one NRSI, depending on the outcome. Relative VE against laboratory-confirmed influenza-related hospitalisation (all strains) was -7.3% (95%CI: -52.1 to 24.4%) (18–49 years of age) and 16.3% (95%CI: -8.7 to 35.5%) (50–64 years of age) (one RCT; certainty of evidence not assessed due to lack of information). No data were available for rVE against influenza-related death. No increased risk was detected for recombinant vaccine-related serious adverse events (two RCT, two NRSI; low certainty of evidence). Overall, for the recombinant vaccine, certainty of evidence was assessed to be moderate for laboratory-confirmed influenza. No assessments were possible for influenza-related hospitalisation (not enough information, only conference abstract available) and influenza-related death (no data). For serious adverse events, certainty of evidence was low.

No data on rVE or safety of the mRNA-based vaccine were available.

Overall, low-to-moderate relative vaccine effectiveness was found for the MF59-adjuvanted vaccine, the high-dose vaccine and the recombinant vaccine for laboratory-confirmed influenza. Low-to-moderate relative vaccine effectiveness was also found for the MF59-adjuvanted vaccine and the high-dose vaccine for laboratory-confirmed influenza-related hospitalisation. In this update of the 2020 primary systematic review, the evidence on rVE of newer and/or enhanced influenza vaccines compared to standard vaccines is still limited. No data were found on head-to-head comparison between the different new and/or enhanced vaccines. A larger evidence base is available on safety, demonstrating an overall favourable safety profile for all vaccines included in the review. Further studies are needed to allow more substantial conclusions on the potential benefits of the newer and/or enhanced influenza vaccines.

Summary of findings

Standard vaccines are defined as any vaccine other than MF-59 adjuvanted, high-dose vaccine, cell-based vaccine, recombinant vaccines and m-RNA vaccines.

Table 1. Summary of findings on relative effectiveness and safety of MF59-adjuvanted influenza vaccine versus standard influenza vaccine in adults

Outcome		Anticipated	absolute effec	ts (95% CI)			
Number of participants (studies)	Relative effect (95% CI)	With standard influenza vaccine	MF59- adjuvanted influenza vaccine	Difference	Certainty	Assessment	
Laboratory-confirmed influenza. No. of participants: 10 492 (seven observational studies)	rVE-range: -30 (-146 to 31) to 88 (51 to 100)	NA.	NA	NA	⊕⊕⊖⊖ Low ^{a,b}	MF59-adjuvanted influenza vaccines may or may not reduce laboratory-confirmed influenza infection in adults compared to standard vaccine.	
Influenza-related hospitalisation (laboratory-confirmed) No. of participants: 512 (one observational study)	rVE 59.2 (14.6 to 80.5)	NA	NA	NA	⊕⊕⊕○ Moderate ^a	MF59-adjuvanted influenza vaccines probably reduce hospitalisation related to laboratory-confirmed influenza infection in adults compared to standard vaccine.	
Influenza-related death (laboratory-confirmed)	-	-	-	-	-	No data reported.	
Serious adverse event (SAE) Number of participants: 8 504 (three RCTs)	RR 0.95 (0.19 to 4.72)	0.1%	0.1% (0 to 0.3)	0.0% fewer (0.1 fewer to 0.3 more)	⊕⊕○○ Low ^{c,d}	MF59-adjuvanted influenza vaccines may result in little-to-no difference in serious adverse events (SAEs) compared to the standard vaccine.	
Idiopathic thrombocytopenic purpura	-	-	-	-	-	No data reported.	
Narcolepsy/cataplexy	-	-	-	-	-	No data reported.	
Guillain–Barré syndrome (GBS)	-	- (and its 050/ /	-	- (a) is bessed a	-	No data reported.	

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: confidence interval; RR: risk ratio; rVE: relative vaccine effectiveness ((1 – Risk Ratio) *100%)

GRADE Working Group grades of evidence

⊕⊕⊕⊕ **High certainty:** we are very confident that the true effect lies close to that of the estimate of the effect.

⊕⊕⊕○ **Moderate certainty:** we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

 $\oplus \oplus \bigcirc \bigcirc$ **Low certainty:** our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

 $\oplus \bigcirc \bigcirc$ **Very low certainty:** we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

- a. Residual confounding cannot be excluded.
- b. Heterogeneous point estimates between the studies.
- c. High risk of bias in two out of three studies.
- d. Wide confidence interval.

Table 2. Summary of findings on relative effectiveness and safety of high-dose influenza vaccine versus standard influenza vaccine in adults

Outcome	D. J. div.	Anticipate	ed absolute e	ffects (95% CI)		
Number of participants (studies)	Relative effect (95% CI)	With standard influenza vaccine	High- dose influenza vaccine	Difference	Certainty	Assessment
Laboratory-confirmed influenza (lab confirmed) assessed with PCR Number of participants: 31 989 (one RCT)	rVE 24 (11 to 36)	1.9%	1.4 % (1.2 to 1.7)	0.5% fewer (0.7 fewer to 0.2 fewer)	⊕⊕⊕⊜ Moderateª	High-dose influenza vaccines probably slightly reduce laboratory-confirmed influenza infection in adults.
Influenza-related hospitalisation (laboratory-confirmed) assessed with PCR Number of participants: 1 107 (one NRSI)	rVE 27 (-1 to 48)	NA	NA	NA	⊕⊕⊖⊖ Low ^{b,c}	High-dose influenza vaccines may slightly reduce hospitalisation related to laboratory-confirmed influenza infection in adults.
Influenza-related death (laboratory-confirmed)	-	-	-	-	-	No data reported.
Serious adverse events (SAE) Number of participants: 9 034 (six RCTs)	RR 1.02 (0.42 to 2.46)	0.2%	0.2 % (0.1 to 0.6)	0.0% fewer (0.1 fewer to 0.4 more)	⊕⊕⊖⊖ Low ^{c,d}	High-dose influenza vaccines may result in little to no difference in serious adverse events (SAEs) related to vaccination.
Idiopathic thrombocytopenic purpura	-	-	-	-	-	No data reported.
Narcolepsy/cataplexy	-	-	-	-	-	No data reported.
Guillain–Barré syndrome (GBS)	-	-	-	-	-	No data reported.

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; RR: risk ratio; rVE: relative vaccine effectiveness ((1 – Risk Ratio) *100%)

GRADE Working Group grades of evidence

 $\oplus \oplus \oplus \oplus \ominus \ominus \ominus \ominus$ we are very confident that the true effect lies close to that of the estimate of the effect.

 $\oplus \oplus \ominus \bigcirc$ **Moderate certainty:** we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

⊕⊕○○ **Low certainty:** our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect

 $\oplus \bigcirc \bigcirc$ **Very low certainty:** we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

- a. One RCT with moderate risk of bias.
- b. Residual confounding cannot be excluded.
- c. Wide confidence interval.
- d. Moderate risk of bias for three out of six studies.

Table 3. Summary of findings on relative effectiveness and safety of cell-based influenza vaccine versus standard influenza vaccine in adults

Outcome		Anticipated	absolute effe	cts (95% CI)		
Number of participants (studies)	Relative effect (95% CI)	With standard influenza vaccine	With cell- based influenza vaccine	Difference	Certainty	Assessment
Laboratory-confirmed influenza (lab-confirmed) assessed with PCR. Number of participants: 1 025 097 (two observational studies)	rVE-range -5.8 (-36.1 to 17.7) to 21.4 (-7.3 to 42.4)	NA	NA	NA	⊕⊕⊖⊖ Lowª	Cell-based influenza vaccines may or may not reduce laboratory- confirmed influenza infection in adults.
Influenza-related hospitalisation (labconfirmed) assessed with PCR. Number of participants: 1 741 (one observational study).	rVE 8.5 (-75.9 to 52.3)	NA	NA	NA	⊕⊕○○ Low ^{a,b}	Evidence is uncertain as to whether cell-based influenza vaccines reduce hospitalisation related to laboratory-confirmed influenza infection in adults.
Influenza-related death (laboratory-confirmed).	-	-	-	-	-	No data reported.
Serious adverse events (SAE) Number of participants: 3 208 (one RCT)	RR 0.39 (0.02 to 9.49)	NA	NA	NA	⊕⊕⊜⊝ Low ^b	Cell-based influenza vaccines may or may not decrease serious adverse events (SAEs) related to vaccination.
Idiopathic thrombocytopenic purpura	-	-	-	-	-	No data reported.
Narcolepsy/cataplexy	-	-	-	-	-	No data reported.
Guillain-Barré syndrome (GBS)	-	-	-	-	-	No data reported.

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: confidence interval; RR: risk ratio; rVE: relative vaccine effectiveness ((1 – Risk Ratio) *100%)

GRADE Working Group grades of evidence

 $\oplus \oplus \oplus \oplus \bigoplus$ **High certainty:** we are very confident that the true effect lies close to that of the estimate of the effect.

⊕⊕⊕○ **Moderate certainty:** we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

 $\oplus \oplus \bigcirc \bigcirc$ **Low certainty:** our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

 $\oplus \bigcirc \bigcirc$ **Very low certainty:** we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

- a. Residual confounding cannot be excluded.
- b. Wide confidence interval.

Table 4. Summary of findings on relative effectiveness and safety of recombinant influenza vaccine versus standard influenza vaccine in adults

Outcome		Anticipated	absolute effect	s (95% CI)			
Number of participants (studies)	Relative effect (95% CI)	With standard influenza vaccine	With recombinant influenza vaccine	Difference	Certainty	Assessment	
Laboratory-confirmed influenza (lab-confirmed) assessed with PCR Number of participants: 8 855 (one RCT).	rVE 30 (10 to 47)	3.1%	2.2% (1.7 to 2.8)	0.9% fewer (1.5 fewer to 0.3 fewer)	⊕⊕⊕○ Moderate ^a	Recombinant influenza vaccines probably slightly reduce laboratory- confirmed influenza infection in adults.	
Influenza-related hospitalisation (lab- confirmed) assessed with PCR Number of participants: 1 630 328 (one RCT)	-	could not be	the evidence assessed due information.	-	-	NA	
Influenza-related death (laboratory-confirmed)	-	-	-	-	-	No data reported.	
Serious adverse events (SAE) Number of participants: 907 (two RCTs).	RR 3.04 (0.32 to 29.10)	NA	NA	NA	⊕⊕○○ Low ^b	Recombinant influenza vaccines may or may not result in an increase in serious adverse events (SAEs) related to vaccination.	
Idiopathic thrombocytopenic purpura Number of participants: 42 684 (one observational study).	OR 0.52 (0.15 to 1.50)	NA	NA	NA	⊕⊕○○ Low ^{c,d}	Recombinant influenza vaccines may or may not result in a decrease in idiopathic thrombocytopenic purpura related to vaccination.	
Narcolepsy/cataplexy Number of participants: 305 659 (one observational study).	OR 0 (0 to 6)	NA	NA	N.A.	⊕○○○ Very low ^{d,e}	Evidence is uncertain for the effect of recombinant influenza vaccines on narcolepsy/cataplexy related to vaccination.	
Guillain–Barré syndrome (GBS) Number of participants: 305 659 (one observational study).	OR 0.00 (0.00 to 16.07)	NA	NA	N.A.	⊕○○○ Very low ^{d,e}	Evidence is uncertain for the effect of recombinant influenza vaccine on Guillain–Barré syndrome related to vaccination.	

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: confidence interval; OR: odds ratio; RR: risk ratio; rVE: relative vaccine effectiveness ((1 - Risk Ratio) *100%)

GRADE Working Group grades of evidence

⊕⊕⊕⊕ **High certainty:** we are very confident that the true effect lies close to that of the estimate of the effect.

 $\oplus \oplus \ominus \bigcirc$ **Moderate certainty:** we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

 $\oplus \oplus \bigcirc \bigcirc$ **Low certainty:** our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

 $\oplus \bigcirc \bigcirc$ **Very low certainty:** we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

- a. One RCT with moderate risk of bias.
- b. Two RCTs with moderate risk of bias.
- c. Residual confounding cannot be excluded.
- d. Wide confidence interval.
- $e. \ No \ adjustment \ for \ co-morbidities, \ even \ though \ there \ was \ a \ significant \ difference \ between \ the \ groups.$

1. Background

Influenza is a respiratory infectious disease that spreads globally through seasonal epidemics and occasional pandemics [1, 2]. The virus is mainly transmitted between individuals through droplets, indirect contact, and aerosols [3]. Influenza viruses belong to the *Orthomyxoviridae* family, which consists of RNA viruses that are categorised into four distinct types [2]. In humans, the most commonly observed types are influenza A and B, which are responsible for the majority of infections.

Before the emergence of the novel coronavirus (SARS-CoV-2) in December 2019, influenza was considered to have one of the greatest impacts on disability-adjusted life years of all infectious diseases in Europe [4]. During the 2017–2018 influenza season in Europe, the estimated all-cause influenza-attributable mortality was 25.4 (95% CI 25.0 to 25.8) per 100 000 population [5]. The burden of seasonal influenza is influenced by various factors such as the circulating strain[s], including antigenic drift; immunity in the population after previous infection and the extent of vaccination coverage [6].

Vaccination is the most effective means for preventing influenza infection. However, the effectiveness of influenza vaccines varies to some degree from season to season and is influenced by factors such as the health status and immune competence of the recipient, the degree of match between circulating vaccine strains and vaccine production process [1]. As a result, the effectiveness of standard influenza vaccines is known to be suboptimal in specific population groups [7]. The response to standard influenza vaccine is reduced, especially among groups that are at higher risk of a severe disease outcome, such as the elderly and people with immunocompromising conditions. Consequently, there are many efforts and ongoing developments to increase the effectiveness of influenza vaccination, particularly for these groups of people. Newer and enhanced influenza vaccines, such as high-dose, recombinant, cell-based or MF59-adjuvanted seasonal influenza vaccines, have been developed in an attempt to improve vaccine effectiveness [7].

In 2020, a systematic review of the efficacy, effectiveness and safety of newer and/or enhanced seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals aged ≥ 18 years was conducted by the Irish Health Information and Quality Authority (HIQA) under contract to the European Centre for Disease Prevention and Control (ECDC). The review covered data published up to 7 February 2020 [8-12]. The aim of the systematic review (herein referred to the primary review) was to assess and synthesise the available evidence on the efficacy, effectiveness and safety of newer and/or enhanced inactivated seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals aged 18 years or older, namely: MF59-adjuvanted, cell-based, high-dose, and recombinant haemagglutinin (HA) influenza vaccines. While the safety profiles of these vaccines were generally consistent with expectations, based on their individual compositions, and were well-tolerated, the overall evidence for the efficacy and effectiveness of newer and/or enhanced inactivated influenza vaccines was limited at that time. However, the primary review identified a number of potentially relevant studies that were still ongoing. This emphasised the need to update the systematic review in order to complement the evidence available on efficacy, effectiveness and safety of newer and/or enhanced seasonal influenza and include new developments, such as messenger RNA (mRNA)-based influenza vaccine, to facilitate and support future decision-making on the use of such vaccines.

2. Objectives

The aim of this systematic review update is to review, assess and synthesise the recent literature (published up to the date of the last search on 24 July 2023) on newer and/or enhanced inactivated seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥ 18 years of age [8].

The following key questions are addressed:

- What is the efficacy, effectiveness and safety of trivalent and quadrivalent egg-based MF59-adjuvanted seasonal influenza vaccine⁶ by influenza type, subtype (clade if available), age and risk group?
- What is the efficacy, effectiveness and safety of trivalent and quadrivalent egg-based high-dose seasonal influenza vaccine⁷ by influenza type, subtype (clade if available), age and risk group?
- What is the efficacy, effectiveness and safety of trivalent and quadrivalent cell-based seasonal influenza vaccine⁸ by influenza type, subtype (clade if available), age and risk group?
- What is the efficacy, effectiveness and safety of trivalent and quadrivalent recombinant HA seasonal influenza vaccine⁹ by influenza type, subtype (clade if available), age and risk group?
- What is the efficacy, effectiveness and safety of a quadrivalent messenger RNA (mRNA)-based influenza vaccine ¹⁰ by influenza type, subtype (clade if available), age and risk group?

The protocol for this systematic review and meta-analyses has been developed following the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2020 statement (http://www.prisma-statement.org/). This review is registered in the International Prospective Register of Systematic Reviews (PROSPERO) under the registration number CRD42023441114 [13].

⁶ E.g. Fluad/Fluad Tetra produced by Seqirus.

⁷ E.g. Fluzone/Fluzone Quadrivalent produced by Sanofi Pasteur.

⁸ E.g. Flucelvax/Flucelvax Tetra produced by Seqirus.

⁹ E.g. Flublok/Flublok Quadrivalent produced by Sanofi Pasteur.

¹⁰ E.g. mRNA-1010 by Moderna, MRT5407 and MRT4113 by Sanofi Pasteur

3. Review methods

3.1 Types of studies

We considered randomised controlled trials (RCTs) with randomisation either at the individual or cluster level. Non-randomised studies (NRSI) were also considered, as long as they had a control group. This included:

- studies in which participants (individuals or clusters of individuals) are allocated to different groups (intervention and control group) using methods that are not random;
- observational studies (i.e. prospective and retrospective cohort studies using a longitudinal or crosssectional design, case control studies and test-negative design studies). In observational studies the allocation to the group is not determined by the study investigators, but by the nature of other factors outside the control of the investigator;
- any in-human studies of the above-described study designs. Study reports should preferably have been
 published in a peer-reviewed journal, however, non-peer reviewed data were also considered, if sufficient
 information on study methods and results was available.

3.2 Types of participants

We considered studies performed in subjects ≥18 years, irrespective of health status or setting.

3.3 Types of interventions

We considered studies that applied at least one of the following newer and/or enhanced seasonal tri- or quadrivalent influenza vaccines:

- adjuvanted trivalent or quadrivalent vaccine¹¹;
- high-dose trivalent or quadrivalent inactivated vaccine¹²;
- trivalent or quadrivalent inactivated cell-based vaccine¹³;
- recombinant trivalent or quadrivalent HA vaccine¹⁴;
- quadrivalent mRNA-based vaccine¹⁵.

3.4 Types of comparators

Valid comparators were tri- or quadrivalent standard influenza vaccines or one of the above-mentioned newer and/or enhanced seasonal tri- or quadrivalent influenza vaccines (head-to-head comparison between newer and/or enhanced vaccines).

3.5 Types of outcome measures

3.5.1 Timing of outcome measurement

We extracted end-of-season outcome measure estimates for each season reported. If end of season estimates were not available, we extracted interim or partial season estimates.

3.5.2 Primary outcome measures

Efficacy and effectiveness outcomes

We assessed the following primary efficacy and effectiveness outcomes:

- laboratory-confirmed influenza (a positive laboratory diagnosis by PCR, virus culture or antigen detection);
- influenza-related hospitalisation (laboratory-confirmed by PCR, virus culture or antigen detection);
- influenza-related death (laboratory-confirmed by PCR, virus culture or antigen detection).

¹¹E.g. Fluad/Fluad Tetra, produced by Seqirus

¹²E.g. Fluzone/Fluzone Quadrivalent produced by Sanofi Pasteur

¹³E.g. Flucelvax/Flucelvax tetra produced by Segirus

¹⁴E.g. Flublok/Flublok Quadrivalent produced by Sanofi Pasteur

¹⁵E.g. mRNA-1010 by Moderna, MRT5407 and MRT4113 by Sanofi Pasteur.

Safety outcomes

We assessed the following primary safety outcomes:

 serious adverse events (requiring intervention to prevent disability or permanent damage, resulting in disability or permanent damage, initial or prolonged hospital care, congenital anomaly/birth defect, lifethreatening, or resulting in death).

3.5.3 Secondary outcome measures

Efficacy and effectiveness outcomes

We assessed the following secondary efficacy and effectiveness outcomes:

- influenza-related ICU admissions (laboratory-confirmed by PCR, virus culture or antigen detection);
- influenza-associated pneumonia/lower respiratory tract disease (laboratory-confirmed by PCR, virus culture or antigen detection);
- influenza-associated cardiovascular disease (laboratory-confirmed by PCR, virus culture or antigen detection);
- influenza-like illness (ILI) (symptoms of influenza only). Internationally accepted case definitions to be used (e.g. WHO, US CDC, EU¹⁶).

Safety outcomes

We assessed the following secondary safety outcomes:

- Systemic adverse events (e.g. malaise, nausea, fever, arthralgia, myalgia, rash, headache and more generalised and serious signs, such as neurological harm). After consultation with the experts of the Influenza Working Group, it was decided to focus the analysis on headache and fever as the most relevant and mainly reported events.
- Local adverse events (e.g. pain, erythema, oedema/swelling, induration). After consultation with the experts
 of the Influenza Working Group, it was decided to focus the analysis on pain and swelling as the most
 relevant and mainly reported local adverse events.
- Adverse pregnancy outcomes after vaccination during pregnancy: spontaneous abortion, foetal death, stillbirth, pre-term birth (less than 37 weeks), pre-eclampsia and eclampsia.
- Adverse neonatal outcomes after vaccination during pregnancy: congenital malformations (minor and major), neonatal death, and small-for-gestational-age.

3.6 Search methods for identification of studies

3.6.1 Literature searches

Comprehensive systematic literature searches for relevant studies were conducted by following the recommendation of PRESS (Peer Review of Electronic Search Strategies) [14]. The full electronic search strategies were peer-reviewed by an information specialist and validated by checking whether the strategy identified studies already known.

For this update of a systematic review [8] a search for literature published after 1 January 2020 (date of last search of primary review: 7 February 2020) was conducted on 24 July 2023 [8]. No language filters were applied. For each database, the date of the search, the search strategy as well as the number of search results were documented. Search strategies for the databases mentioned below were adapted from the (initial) Medline strategy. The complete search strategies are reported in Annex 1.

3.6.2 Searches for published studies

Searches for published studies were conducted in the following electronic data sources:

- Medline (ALL) (via Ovid);
- Embase (via Ovid).

3.6.2 Searches for unpublished and ongoing studies

Searches for ongoing studies or unpublished completed studies were performed in ClinicalTrials.gov (www.clinicaltrials.gov).

¹⁶ WHO definition: an acute respiratory infection with: measured fever of ≥38°C and cough with onset within the last 10 days. US CDC definition: fever (temperature of 37.8°C or greater) and a cough and/or a sore throat in the absence of a known cause other than influenza. EU definition: sudden onset of at least one among: fever, feverishness, headache, malaise, myalgia, and at least one among: cough, sore throat, shortness of breath.

3.6.3 Supplementary searches

We used relevant studies and/or systematic reviews to search for additional references via the Pubmed similar articles function (https://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_190.html) and forward citation tracking. Reference lists of studies included were reviewed and experts in the field were contacted to enquire about any further relevant studies or unpublished data that may not have been retrieved by the electronic searches. In addition, a search was conducted in sources, including websites of regulatory agencies (European Medicines Agency (EMA) and the US Food and Drug Administration (FDA)).

3.7 Data collection and analysis

3.7.1 Study selection and management

Titles and abstracts of the citations identified by the searches were independently screened by two reviewers (title and abstract screening), and full texts of all potentially relevant articles were obtained. Full texts were also independently checked for eligibility by two reviewers, and reasons for exclusion were documented (full text screening). Any disagreement was resolved by consensus, moderated by a third reviewer. The Covidence® software was used for literature screening.

3.7.2 Data extraction

Two pairs of review authors extracted the following study data and tabulated all relevant information:

- Study characteristics including:
 - author and year of publication
 - study design;
 - start and end of study;
 - Sample size (total and for each study arm);
 - funding sources;
 - conflict of interest disclosures.
- Setting including:
 - setting (outpatients, inpatients, long-term care facilities, etc.)
 - influenza season and dominant influenza strain/clade, if match to vaccine-strain/clade;
 - geographical setting.
- Characteristics of the participants including:
 - age;
 - sex;
 - comorbidities;
 - geographical area;
 - pregnancy.
- Ascertainment of vaccination status including:
 - self-reported;
 - medical chart review;
 - immunisation registry.
- Characteristics of the intervention/exposure including:
 - type of vaccine (inactivated adjuvanted, high-dose, cell-based, recombinant, mRNA by brand);
 - type of virus.
- Characteristics of the comparator including:
 - type of comparison intervention
 - o standard influenza vaccines (standard trivalent, quadrivalent by brand);
 - new/enhanced influenza vaccines (inactivated adjuvanted, high-dose, cell-based, recombinant, mRNA by brand).
- Outcome measures including:
 - reported outcomes and results including method of laboratory confirmation (PCR, virus culture or antigen detection);
 - outcome description including unit of measurement;
 - time between vaccination and outcome measurement (follow-up);
 - NRSI: where adjusted data (including covariates adjusted for) were available, these data were used;
 where adjusted data were not available, we extracted the unadjusted data as reported in the study;
 - RCT: we used unadjusted data;
 - cluster-RCT: we used adjusted data, where available.

Data extraction forms were piloted for different study designs. Disagreements in extracted data between the two reviewers were resolved through discussion until consensus was reached, involving a third reviewer if necessary. If necessary, authors of studies were contacted to provide any missing information or clarify any issues.

3.7.3 Assessment of risk of bias in the studies included

Risk of bias of each study included study was independently assessed by pairs of two authors by outcome level. Any disagreement was resolved by consensus, moderated by a third reviewer.

Bias in an RCT was evaluated according to the revised Cochrane risk of bias tool for randomised trials (RoB 2) considering the following domains: (i) bias arising from the randomisation process; (ii) bias due to deviations from intended interventions; (iii) bias due to missing outcome data; (iv) bias in measurement of the outcome; and (v) bias in selection of the reported result. These domains were judged as having 'low risk of bias', 'some concerns' or 'high risk of bias' [15, 16].

Bias in a NRSI was evaluated according to the 'Risk of Bias in Non-randomised Studies of Interventions' tool (ROBINS-I) considering the following domains: (i) bias due to confounding (e.g. age, socioeconomic differences); (ii) bias in selection of participants into the study (e.g. inception bias); (iii) bias in measurement of the intervention; (iv) bias due to departures from intended interventions; (v) bias due to missing data; (vi) bias in measurement of outcomes; (vii) bias in selection of the reported result; and (viii) overall bias [17]. Domains were judged as 'low,' 'moderate', 'serious', 'critical' or 'unclear' risk of bias.

Funnel plots for small study effects were constructed and visually inspected if \geq ten studies were available addressing the same outcome [18].

3.7.4 Unit of analysis

The unit of analysis was the individual study participant.

3.7.5 Dealing with missing data

For RCTs, data were analysed – if possible – on intention-to-treat (ITT) basis or according to recently developed recommendations for systematic reviewers for addressing missing data in clinical studies [19].

3.7.6 Measures of treatment effect

Relative vaccine estimates (in terms of efficacy or effectiveness) were expressed in percentage and calculated as follows: $vaccine\ efficacy\ or\ effectiveness\ =\ (1-vaccine\ effect\ ratio)\ \times\ 100$. We thereby used the vaccine effect ratio as reported in the primary study (e.g. odds ratio (OR), risk ratio (RR), hazard ratio (HR), or incidence rate ratio (IRR)). The precision of the vaccine effect estimates (in terms of efficacy or effectiveness) was summarised with the corresponding 95% confidence interval (CI).

3.7.7 Assessment of heterogeneity

Heterogeneity was evaluated and statistically quantified, where appropriate, based on I^2 and the statistical test chi square and visual inspection of the forest plot [19]. The following thresholds were used to interpret an I^2 :

- 0% to 40%: might not be important;
- 30% to 60% may represent moderate heterogeneity;
- 50% to 90%: may represent substantial heterogeneity;
- ≥ 75 %: considerable heterogeneity.

3.7.8 Data synthesis

Where appropriate, meta-analyses were conducted separately for each intervention (type of influenza vaccine) and separately for RCTs and NRSIs. Effect estimates were pooled by applying the inverse variance method. For metanalysis the fixed-effects model was used as primary model. Random-effects models were used as sensitivity analysis. For all meta-analyses the Mantel-Haenszel method was used.

Outcomes derived from a NRSI rated as critical (by using ROBINS-I) were not included in the meta-analysis to avoid misleading conclusions [20]. Meta-analyses were conducted with RevMan Web.

In general, if pooling was not considered to be appropriate, a narrative synthesis was prepared.

3.7.9 Subgroup analysis

We planned to conduct the following subgroup analyses using the random-effects model, if sufficient data were available:

- Characteristics of the population (see suggested analyses, Section 3.3.1)
 - Age (18-64, 65-74, 75-84, 65+, 85+ years);
 - Pregnancy (pregnant or not);
 - Comorbidities (≥1 versus none);
 - Immunocompromising condition or therapy (≥1 vs. none);
 - Pre-existing cardio-pulmonary diseases (≥1 versus none).
- Characteristics of the setting (see suggested analyses, Section 3.4)
 - Geographical location (e.g. low- and middle-income versus high-income countries);
 - Community-based study versus hospital-based versus nursing homes.

3.7.10 Sensitivity analysis

We planned to conduct sensitivity analyses according to the following characteristics, if data allowed:

- Risk of bias (exclusion of RCTs with a high risk (RoB 2), and exclusion of NRSI with serious or critical risk (ROBINS-I)):
- Meta-analysis model (random-effects versus fixed-effects);
- Exclusion of studies with inexplicably high or low effects;
- Ascertainment of vaccination status (exclusion of studies with self-reported vaccination status);
- Study design (RCT versus NRSI; prospective versus retrospective);
- Type of publication (peer-reviewed versus non-peer-reviewed studies).

3.8 Summary of findings and certainty of the evidence assessment

3.8.1 Summary of findings table

We used the GRADEpro GDT to create a summary of findings table. We included the following primary outcomes:

- laboratory-confirmed influenza;
- influenza-related hospitalisation;
- influenza-related death;
- serious adverse events (requiring intervention to prevent disability or permanent damage, resulting in disability or permanent damage, initial or prolonged hospital care, congenital anomaly/birth defect, lifethreatening, or resulting in death).

3.8.2 Assessment of certainty in the evidence

The certainty of evidence of selected patient-relevant outcomes was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach [21]. The following prioritised outcomes were considered (i.e. primary outcomes defined under 3.1.4).

Efficacy/effectiveness

- laboratory-confirmed influenza (a positive laboratory diagnosis by PCR, virus culture or antigen detection);
- influenza-related hospitalisation (laboratory-confirmed by PCR, virus culture or antigen detection);
- influenza-related mortality (laboratory-confirmed by PCR, virus culture or antigen detection).

Safety

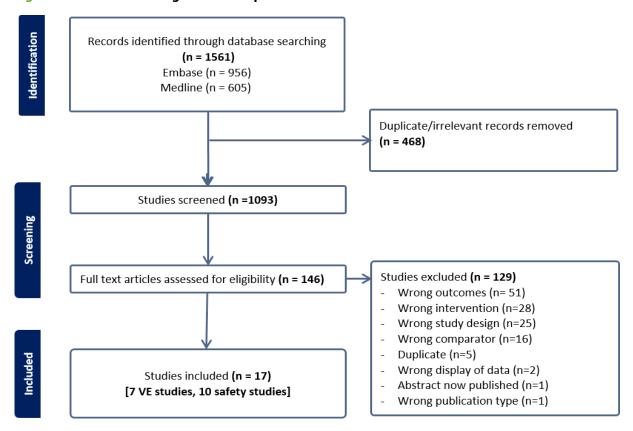
 Serious adverse events (requiring intervention to prevent disability or permanent damage, resulting in disability or permanent damage, initial or prolonged hospital care, congenital anomaly/birth defect, lifethreatening, or resulting in death).

In brief, the GRADE assessment considers five domains different aspects including:

- study limitations (risk of bias);
- imprecision (when 95% confidence intervals are wide and/or are close to null effect around the point estimate or evidence was derived from only a few studies with a small number of participants);
- inconsistency (i.e. differences in effect estimates across studies that assessed the same comparison);
- indirectness (i.e. differences in patient characteristics, differing (co-)intervention, differing extent to which the intervention of interest is optimally conducted, differing comparator, and differences in measurement of outcome);
- Publication bias.

These domains were considered in addition to the underlying study design to rate the certainty of evidence for each outcome. For each of the considered domains, we downgraded our certainty by one level, in the event of serious concerns, or by two levels in the event of very serious concerns, resulting in the overall rating of high, moderate, low or very low for each evaluated outcome. In accordance with the GRADE guidelines for NRSI assessed with ROBINS-I, we started with a high certainty of evidence [22]. The narrative statements ('what happens'-column] were informed by GRADE guidelines 26 [23].

4. Review results


4.1 Description of studies

4.1.1 Results of the search

The literature search in the above-mentioned sources identified 1 561 records. No additional records were identified via searches of reference lists. After removing duplicates, 1 093 records remained. During title and abstract screening, we judged 947 records to be irrelevant. From the remaining 146 records, we excluded 129 records during full-text screening (see Annex 2 for records and exclusion reasons]. Finally, we included 17 new studies in this update of the systematic review. Of those, seven studies reported data on vaccine efficacy or effectiveness and 10 studies provided data on safety. The flow of records is illustrated in Figure 1.

In the primary review [8], a total of 110 studies were included. Of those studies, 10 studies on efficacy/effectiveness and 32 studies on safety met the inclusion criteria for this update review and were further considered. The evidence body for this updated systematic review therefore comprised 59 studies (42 studies from the primary review, plus the 17 studies from the updated review). The entire body of evidence will be described below.

Figure 1. PRISMA flow diagram of the update search

4.1.2 Characteristics of included studies

Efficacy/effectiveness studies

Details of studies that reported effectiveness data and were found in the update search are set out in Table 5. We included one cluster-RCT and six NRSI, two of which were retrospective cohort studies, while the other four had a test-negative design. The studies were performed in the USA or Italy and had about 500 to ≥1 million. participants. They reported rVE estimates for one to four influenza seasons between 2015/2016 and 2019/2020. Two studies investigated the high-dose influenza vaccine, another two studies reported rVE estimates for the cell-based vaccine and the recombinant vaccine. One study assessed the MF59-adjuvanted vaccine. No study reported on an mRNA-based influenza vaccine. Three studies reported a total of 10 rVE estimates against laboratory-confirmed influenza. The other four studies provided a total of 12 rVE estimates against laboratory-confirmed influenza-related hospitalisation. We did not identify rVE estimates for the other efficacy/effectiveness outcomes defined in the protocol.

In the primary review [8], there were a total of 10 studies identified that provided estimates of rVE against laboratory-confirmed outcomes compared to standard vaccine. For details on these studies, see Table 6 and Annex 5 (Appendix 5.1 to Appendix 5.4) in the primary review [8]. Seven of these studies reported rVE data on the MF59-adjuvanted vaccine, all of which were rVE estimates against laboratory-confirmed influenza. One study reported rVE of the high-dose vaccine against laboratory-confirmed influenza. Another study reported this outcome for the recombinant vaccine. We did not identify rVE estimates for the other efficacy/effectiveness outcomes defined in the protocol of the primary review.

Table 1. Key characteristics of vaccine efficacy/effectiveness studies of update

Study	Intervention (Comparison)	Study design	Country	Funding	Setting	Outcome	Influenza season	Population	Number vacc	Mean age in years (SD)	Female sex %
Balasubramani 2020 [24]	HD-3v (vs. SD-3/4v)	Test- negative	USA	Non-industry funded	Outpatient	Influenza infection	2015-16, 2016- 17, 2017-18, 2018-19	≥65 years	2 993	HD 73.6 (6.9) SD 73.3 (7.0)	HD 62.3 SD 61.4
Doyle 2021 [25]	HD-3v (vs. SD-3/4v)	Test- negative	USA	Non-industry funded	Inpatient	Influenza-related hospitalisation	2015-16, 2016-17	≥65 years	1 107	NA	57.3
Klein 2020 [26]	Cell-based-3v (vs. SD-3/4v)	Retrospecti ve cohort	USA	Non-industry funded	Outpatient	Influenza infection	2017-18	4-64 years	1 016 965	NA	Cell-based 56.9 SD 56.4
Martin 2021 [27]	Cell-based-3v (vs. SD-3/4v)	Retrospecti ve cohort	USA	Non-industry funded	Inpatient	Influenza-related hospitalisation	2017-18	≥18 years	2 350	NA	NA
Zimmerman 2023 [28]	Recombinant- 4v (vs. SD-3/4v)	Test- negative	USA	Industry funded	Outpatient	Medically attended outpatient influenza	2018-19, 2019-20	≥18 years, high- risk condition, immuno- compromised	1 553	51.5 [18.8]	65.6
Hsiao 2022 [29]	Recombinant- 4v (vs. SD-4v)	RCT	USA	Industry funded	Inpatient	Influenza-related hospitalisation	2018-19, 2019-20	≥18-64 years	1 630 328	NA	NA
Domnich 2022 [30]	MF59-3v (vs. SD-4v)	Test- negative	Italy	Non-industry funded	Inpatient	Influenza-related hospitalisation	2018-19, 2019-20	≥65 years	512	Cases78.9 (7.5) Controls79.6 (7.6)	Cases 50.6 Controls 41.0

HD= high-dose influenza vaccine;

NA= not applicable; SD= standard influenza vaccine (egg-based standard-dose influenza vaccine containing 15 μg HA); 3v/4v= tri-/quadrivalent.

Table 2. Key characteristics of vaccine efficacy/effectiveness studies of primary review, included in the evidence body of the update review

Study	Intervention (Comparison)	Study design	Country	Setting	Outcome	Influenza season	Population	Number vacc
Van Buynder 2013 [31]	MF59-3v (vs. SD-3v)	Case-control	Canada	Multicentre	Laboratory-confirmed influenza	2011–2012	Adults aged ≥65 years	282
Mira-Iglesias 2019 [32]	MF59-3v (vs. SD-3v)	Case-control	Spain	Hospital	Laboratory-confirmed influenza	2017–2018	Adults aged ≥60 years	1 477
Pebody 2020a [33]	MF59-3v (vs. SD-3v/4v)	Case-control	United Kingdom	General practice and hospitals	Laboratory-confirmed influenza hospitalization	2018–2019	Adults aged ≥65 years	1 439
Pebody 2020b [34]	MF59-3v (vs. SD-3v/4v)	Case-control	United Kingdom	General practice	Laboratory-confirmed influenza	2018–2019	Children and adults aged >0 years	2 326
Bellino 2019 [35]	MF59-3v (vs. SD-3v/4)	Case-control	Italy	General practice	Laboratory-confirmed influenza	2018–2019	Children and adults aged ≥6 months	2 526
Rondy 2017a [36]	MF59-3v (vs. SD-3v)	Case-control	Europe	Multicentre, hospital	Laboratory-confirmed influenza	2016-2017	Adults aged ≥65 years	640
Rondy 2017b [37]	MF59-3v (vs. SD-3v)	Case-control	Europe	Multicentre, hospital	Laboratory-confirmed influenza	2015-2016	Adults aged ≥65 years	1 802
Diaz Granados 2014 [38]	HD-3v (vs. SD-3v)	RCT	United States and Canada	Multicentre	Laboratory-confirmed ILI	2011–2013	Adults aged ≥65 years	31 989
Bruxvoort 2019 [39]	Cell-based-3/4 vs SD-v3/4	Case control	United States	Hospital	Laboratory-confirmed influenza hospitalisation	2017–2018	Children and Adults (aged ≥4 years)	8 132
Dunkle 2017a [40]	Recombinant- 4v vs. SD-4v	RCT	United States	Multicentre, outpatients	Culture-confirmed influenza-like illness, PCR-confirmed ILI	2014–2015	Adults (aged ≥ 50 years)	9 003

HD=high-dose influenza vaccine;

NA = not applicable;

SD= standard influenza vaccine (egg-based standard-dose influenza vaccine containing 15 µg HA); 3v/4v= tri-/quadrivalent.

Safety studies

Details of studies that reported safety data and were found in the update search are provided in Table 7. We identified five RCTs. In addition, five NRSI (both retrospective cohort studies) were identified. The studies were performed in Australia, Belgium, Germany, Japan, France, Italy, the Netherlands, Poland, Taiwan and the USA and had about 40 to 1 024 160 participants. Six studies investigated the high-dose influenza vaccine. Two studies provided data for the recombinant and two other studies for the MF59-adjuvanted vaccine. No study was reported on an mRNA-based influenza vaccine. One study reported data of a head-to-head comparison between the MF59-adjuvanted and the high-dose influenza vaccine. Nine studies reported on serious adverse events. For systemic reactions, six studies gave data on fever and four studies reported on headaches. With regard to local reactions, six studies reported data on pain at the injection site and three on swelling.

In the primary review [8], there were 32 studies identified which reported data on the above-mentioned safety outcomes, as compared to standard vaccine. Study characteristics are reported in Table 8 and Appendix 7.1-Appendix 7.4 of the primary review [8]. Twelve of these studies reported safety data on the MF59-adjuvanted vaccine and seven studies had estimates for high-dose vaccine. For the cell-based vaccine, six studies reported safety estimates, while seven studies were available for the recombinant vaccine.

Table 3. Key characteristics of vaccine safety studies for update

Study	Intervention (Comparison)	Study design	Country	Type of funding	Population	Number vaccinated	Mean age in years (SD)	Female sex - %	Safety outcomes available
Caldera 2020 [41]	HD-3v (vs. SD-4v)	RCT	USA	Non-industry funded	Patients with inflammatory bowel disease on anti-tumour necrosis factor alpha agents 18–64 years	40	Median (IQR) HD 29 (25 to 45) SD 43 (32 to 52)		Local and systemic reactions
Chen 2022 [42]	HD-4v (vs. SD-4v)	RCT	Taiwan	Industry-funded	≥ 65 years	165	71.4 (5.52)	HD 57.3 SD 55.4	Local and systemic reactions SAE
Layton 2020 [43]	HD-3v (vs. SD)	Retrospective cohort	USA	Not reported	≥ 65 years with end-stage renal disease	520 876	74.7 (7.0)	49.5	Local and systemic reactions SAE
Pepin 2021 [44]	HD-4v (vs. SD-4v)	RCT	Belgium, France, Germany, Italy, Poland, the Netherlands	Industry-funded	≥ 60 years	1 533	66.6 (5.97)	50.4	Unsolicited non-serious injection- site AE Unsolicited non-serious systemic AE, SAE, AESI
Sanchez 2023 [45]	HD-4v (vs. SD-4v)	RCT	Japan	Industry-funded	>60 years	2 100	HD 68.2 (4.9) SD 68.4 (5.0)	HD 46.3 SD 47.9	Local and systemic reactions SAE
Pillsbury 2020 [46]	HD-3v (vs. MF59)	Retrospective cohort	Australia	Non-industry funded	≥65 years	47 307	Median (IQR) 71 (68-76)	54.0	Local and systemic reactions SAE
Schmader 2021 [47]	MF59 (vs. HD)	RCT	USA	Non-industry funded	≥65 years	757	Median age (range) 72 (65-97)	55.0	Local and systemic reactions SAE
de Lusignan 2022 [48]	MF59 (vs. SD-4v)	Retrospective cohort	UK	Non-industry funded	0-100 years	1 024 160	NA	NA	Local and systemic reactions SAE
Hansen 2020 [49]	Recombinant-3v (vs. SD-3v)	Retrospective cohort	USA	Industry-funded	≥18 years, pregnant women included	305 659	NA	Rec 52.7 SD 55.3	SAEs Fever
Hsiao 2022 [50]	Recombinant-4v (vs. SD-4v)	Prospective cohort	USA	Industry-funded	Chinese adults 18 to64 years, pregnant women included	42 684	18-65 years	63.8	SAEs Fever

AE= adverse event;

AESI = adverse event;

HD= high-dose; influenza vaccine;

NA = not applicable;

SAE= serious adverse event;

SD= standard influenza vaccine (egg-based standard-dose influenza vaccine containing 15 μg HA); 3v/4v= tri-/quadrivalent

Table 4. Key characteristics of vaccine safety studies of primary review, included in the evidence body of the update review

Study	Intervention (Comparison)	Study design	Country	Population	Number vaccinated	Safety outcomes available
Cowling 2020 [51]	MF59-3v (vs. SD-4v)	RCT	Hong Kong	Community dwelling Adults aged 65–82 years	1 861	Local adverse events, systemic adverse events, serious adverse events
Cowling 2020 [51]	Recombinant-3v (vs. SD-4v)	RCT	Hong Kong	Community dwelling Adults aged 65–82 years	1 861	Serious adverse events, hospitalisation
de Bruijn 2006 [52]	MF59-3v (Subunit influenza vaccine)	RCT	Netherlands	Adults aged ≥61 years	386	Mortality, serious adverse events, local adverse events, systemic adverse events
Durando 2008 [53]	MF59-3v (vs. SD-3v)	RCT	Italy	Healthy Adults aged ≥65 years	270	Serious adverse events, any adverse event
Frey 2003 [54]	MF59-3v (vs. SD-3v)	RCT	United States	Adults aged 18-64 years	301	Local adverse events, systemic adverse events
Frey 2003 [54]	MF59-3v (vs. SD-3v)	RCT	United States, Philippines, Panama and Columbia	Adults aged ≥65 years	7 109	Mortality, local adverse events, systemic adverse events
Gasparini 2001 [55]	MF59-3v (vs. SD-3v)	RCT	Italy	Adults aged 18–65 years, HIV seropositive	308	Serious adverse events, local adverse events, systemic adverse events
Li 2008 [56]	MF59-3v (vs. SD-3v)	RCT	China	Adults aged ≥60 years	600	Serious adverse events, local adverse events, systemic adverse events
Minutello 1999 [57]	MF59-3v (vs. SD-3v)	RCT	Italy	Adults aged ≥65 years	92	Serious adverse events, local adverse events, systemic adverse events
Ruf 2004 [58]	MF59-3v (vs. SD-3v)	RCT	Germany	Adults aged ≥60 years	827	Local and general symptoms, serious adverse events
Scheifele 2013 [59]	MF59-3v (vs. SD-3v)	RCT	Canada	Adults aged ≥65 years	922	Serious adverse events, mortality, local adverse events, systemic adverse events
Seo 2014 [60]	MF59-3v (vs. SD-3v)	RCT	South Korea	Healthy, independently-living adults aged ≥65 years	354	Local adverse events, systemic adverse events
Sindoni 2009 [61]	MF59-3v (vs. SD-3v)	RCT	Italy	Adults [aged ≥65 years]	195	Serious adverse events, local adverse events, systemic adverse events
Couch 2007 [62]	HD-v3 (vs. SD-3v)	RCT	United States	Adults aged ≥65 years	414	Serious adverse events, mortality, local adverse events, systemic adverse events
DiazGranados 2015b [63]	HD-v3 (vs. SD-3v)	RCT	United States	Adults aged 50–64 years	300	Serious adverse events, mortality, local adverse events, systemic adverse events
Falsey 2009 [64]	HD-v3 (vs. SD-3v)	RCT	United States	Adults aged ≥65 years	3 876	Mortality, local adverse events, systemic adverse events
Keitel 2006 [65]	HD-v3 (vs. SD-3v)	RCT	United States	Adults aged ≥65 years	202	Serious adverse events, mortality, local adverse events, systemic adverse events

Study	Intervention (Comparison)	Study design	Country	Population	Number vaccinated	Safety outcomes available
Tsang 2014 [66]	HD-v3 (vs. SD-3v)	RCT	United States	Adults aged ≥65 years	1 912	Serious adverse events, mortality, local adverse events, systemic adverse events
Noh 2019 [67]	HD-4v (vs. SD-4v)	RCT	Republic of Korea	Adults aged 19-64 years	40	Local adverse events, systemic adverse events
Pillet 2019 [68]	HD-4v (vs. SD-4v)	RCT	United States	Adults aged ≥18 years	750	Serious adverse events, local adverse events, systemic adverse events
Ehrlich 2012 [69]	Cell-based-3v (vs. SD-3v)	RCT	United States	Adults aged>50 years	3 208	Serious adverse events, mortality, local adverse events, systemic adverse events
Frey 2010 [70]	Cell-based-3v [vs. SD-3v]	RCT	United States, Poland and France	Healthy adults aged 18-49 years	11 404	Serious adverse events, local adverse events, systemic adverse events
Groth 2009 [71]	Cell-based-3v (vs. SD-3v)	RCT	Germany	Adults aged ≥ 18 years	240	Serious adverse events, mortality, local adverse events, systemic adverse events
Halperin 2002 [72]	Cell-based-3v (vs. SD-3v)	RCT	Canada	Adults and children aged ≥3 years	940	Local adverse events, systemic adverse events
Song 2015 [73]	Cell-based-3v (vs. SD-3v)	RCT	Republic of Korea	Adults aged ≥19 years	1 155	Serious adverse events, local adverse events, systemic adverse events
Szymczakiewicz- Multanowska 2009 [74]	Cell-based-3v (vs. SD-3v)	RCT	Poland	Adults aged ≥18 years	2 654	Serious adverse events, mortality, local adverse events, systemic adverse events
Dunkle 2017a [75]	Recombinant-3v (vs. SD-4v)	RCT	United States	Adults aged≥ 50 years	9 003	Serious adverse events, mortality, local adverse events, systemic adverse events
Dunkle 2017b [40]	Recombinant-3v (vs. SD-4v)	RCT	United States	Adults aged 15-49 years	1 350	Serious adverse events, mortality, local adverse events, systemic adverse events
Baxter 2011 [76]	Recombinant-3v (vs. SD-3v)	RCT	United States	Healthy adults aged 50-64 years	602	Serious adverse events, mortality, local adverse events, systemic adverse events
Izikson 2015 [77]	Recombinant-3v (vs. SD-3v)	RCT	United States	Adults aged ≥50 years	2 640	Serious adverse events, mortality, local adverse events, systemic adverse events
Keitel 2009 [78]	Recombinant-3v (vs. SD-3v)	RCT	United States	Adults aged ≥65 years	869	Serious adverse events, mortality, local adverse events, systemic adverse events
Treanor 2006 [79]	Recombinant-3v (vs. SD-3v)	RCT	United States	Adults aged ≥18 years	399	Local adverse events, systemic adverse events

AE= adverse event;

AESI = adverse event;

HD= high-dose; influenza vaccine; NA= not applicable;

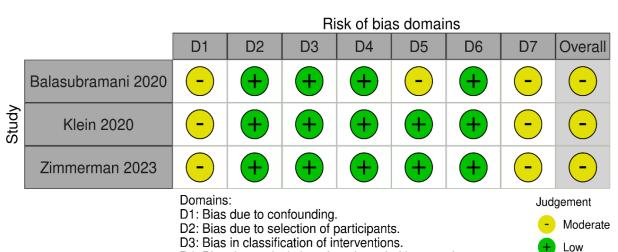
SAE= serious adverse event; SD= standard influenza vaccine (egg-based standard-dose influenza vaccine containing 15 μg HA); 3v/4v= tri-/quadrivalent.

4.2 Risk of bias in the studies included

4.2.1 Overall risk of bias by study

Since risk of bias either varied by outcome in single studies, or only one outcome was reported for a given study, we did not assess risk of bias at study level.

4.2.2 Overall risk of bias by outcome


Efficacy/effectiveness studies

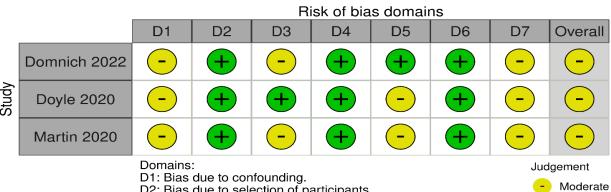
Across the six NRSI that were identified in the update search as reporting data on effectiveness outcomes, overall risk of bias was moderate for each outcome and study, respectively. The main reason for this assessment was that residual confounding (domain 1) could not be excluded in all studies (see Table 9 and Table 10 for details).

Risk of bias could not be assessed for the cluster-RCT [29] since data were only presented in a conference abstract and not enough information was given.

Outcome: laboratory-confirmed influenza

Table 5. Risk of bias VE-studies (assessed with ROBINS-I); outcome: laboratory-confirmed influenza

D4: Bias due to deviations from intended interventions.


D5: Bias due to missing data.

D6: Bias in measurement of outcomes.

D7: Bias in selection of the reported result.

Outcome: laboratory-confirmed hospitalisation

Table 6. Risk of bias in VE-studies (assessed with ROBINS-I); outcome: laboratory-confirmed hospitalisation

D2: Bias due to selection of participants.

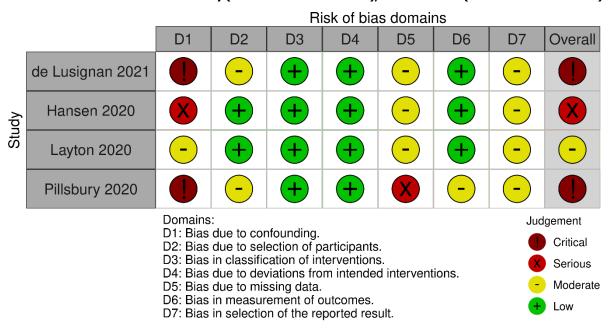
D3: Bias in classification of interventions.

D4: Bias due to deviations from intended interventions.

D5: Bias due to missing data.

D6: Bias in measurement of outcomes.

D7: Bias in selection of the reported result.


Low

Safety studies

The overall risk of bias was moderate to critical in the five NRSI studies that were identified in the update search reporting data on safety outcomes (see Table 11). The main reason for this assessment was that residual confounding (domain 1) could not be excluded in all studies. For two studies confounding was assessed as critical, since only unadjusted data were reported (see Table 11-9). Risk of bias assessments for the main safety outcomes (SAE, pain, swelling, headache, fever) are displayed here, whereas other safety outcomes can be found in Annex 3 (Table 25–28).

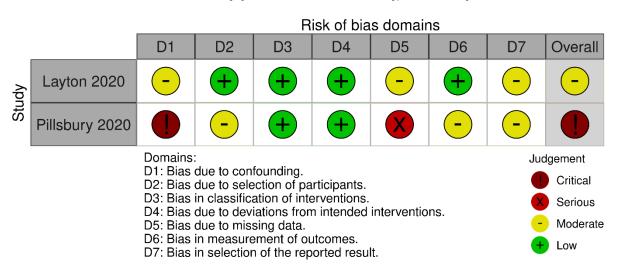

Outcome: SAE

Table 11. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: SAE (serious adverse events)

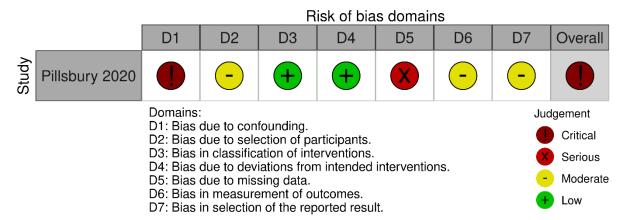

Outcome: pain

Table 7. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: pain

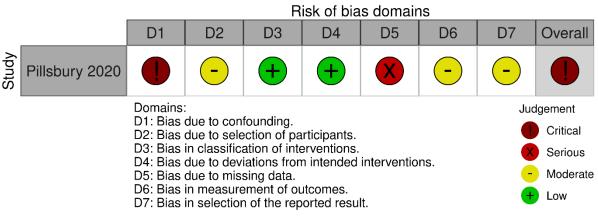

Outcome: swelling

Table 8. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: swelling

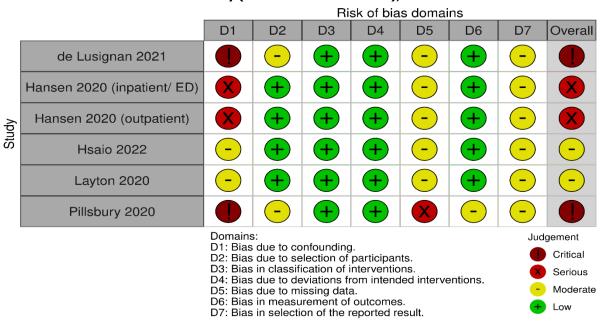
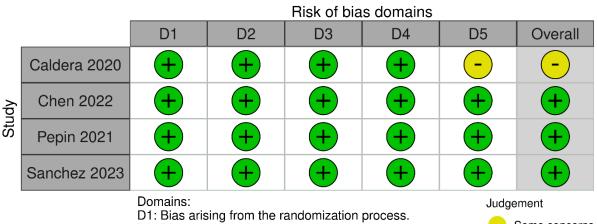

Outcome: headache

Table 9. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: headache

Outcome: fever

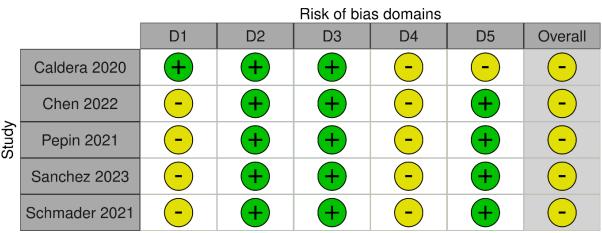

Table 15. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: fever

For the five RCTs that reported safety outcomes the overall risk of bias was low regarding some concerns for each safety outcome. The main reason for this assessment was that in these modified double-blind study designs, with different volumes of the administered vaccines, a risk of unblinding by administrator could not be excluded (see Tables 16, 17, 18, 19 and 20 for details). Since these outcomes are based on subjective reporting by the study participants, knowledge of study arm allocation could have biased outcome assessment. Risk of bias assessments for the main safety outcomes (SAE, pain, swelling, headache, fever) are displayed here, and two more safety outcomes can be found in Annex 4 (Table 37).

Outcome: SAE

Table 10. Risk of bias in RCT safety-studies (assessed with RoB2); outcome: SAE (serious adverse events)

D2: Bias due to deviations from intended intervention. D3: Bias due to missing outcome data.


D4: Bias in measurement of the outcome. D5: Bias in selection of the reported result.

Some concerns

+ Low

Outcome: pain

Table 11. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: pain

Domains:

D1: Bias arising from the randomization process.

D2: Bias due to deviations from intended intervention.

D3: Bias due to missing outcome data.

D4: Bias in measurement of the outcome. D5: Bias in selection of the reported result. Judgement

Some concerns

+ Low

Outcome: swelling

Table 12. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: swelling

Domains:

D1: Bias arising from the randomization process.

D2: Bias due to deviations from intended intervention.

D3: Bias due to missing outcome data.

D4: Bias in measurement of the outcome.

D5: Bias in selection of the reported result.

Judgement

- Some concerns

+ Low

Outcome: headache

Table 13. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: headache

		Risk of bias domains								
		D1	D2	D3	D4	D5	Overall			
Study	Caldera 2020	+	+	+	-	-	-			
	Chen 2022	-	+	+	-	+	-			
	Pepin 2021	-	+	+	-	+	-			
	Schmader 2021	-	+	+	-	+	-			

Domains:

D1: Bias arising from the randomization process.

D2: Bias due to deviations from intended intervention.

D3: Bias due to missing outcome data.

D4: Bias in measurement of the outcome.

D5: Bias in selection of the reported result.

Judgement

- Some concerns

+ Low

Outcome: fever

Table 20. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: fever

Domains:

D1: Bias arising from the randomization process.

D2: Bias due to deviations from intended intervention.

D3: Bias due to missing outcome data.

D4: Bias in measurement of the outcome.

D5: Bias in selection of the reported result.

Judgement

- Some concerns

+ Low

4.3 Effects of interventions

4.3.1 MF59-adjuvanted influenza vaccine

Efficacy/effectiveness

Primary efficacy/effectiveness outcomes

Laboratory-confirmed influenza

In the primary review, seven studies (all NRSI) were included, reporting a total of 13 estimates (Table 21). VE estimates were highly heterogenous and ranged from -30 to 88%, with only two estimates being statistically significant. Due to heterogeneity, metanalysis was not performed.

In the update, no additional studies were identified.

Table 14. Relative effectiveness of MF59-adjuvanted influenza vaccine versus standard influenza vaccine, for laboratory-confirmed influenza

Study	Study design	rVE	95% CI	Season			
All strains							
Van Buynder 2013	NRSI	42%	-8 to 69%	2011-2012			
Mira-Iglesias 2019	NRSI	19%	-10 to 41%	2017–2018			
Pebody 2020a	NRSI	30%	-83 to 73%	2018-2019			
Pebody 2020b	NRSI	16%	-176 to 75%	2018-2019			
Bellino 2019a	NRSI	-1%	-122 to 59%	2018–2019			
A (H1N1)							
Mira-Iglesias 2019	NRSI	-3%	-126 to 53%	2017-2018			
Pebody 2020a	NRSI	3%	-358 to 79%	2018-2019			
A (H3N2)							
Rondy 2017b	NRSI	88%	51 to 100%	2015-2016			
Rondy 2017a	NRSI	-30%	-146 to 31%	2016-2017			
Mira-Iglesias 2019	NRSI	20%	-17 to 46%	2017-2018			
Pebody 2020a	NRSI	43%	-134 to 86%	2018-2019			
В							
Rondy 2017b	NRSI	87%	30 to 100%	2015-2016			
Mira-Iglesias 2019	NRSI	6%	-58 to 44%	2017-2018			

Influenza-related hospitalisation

No studies matching the inclusion criteria of this update were identified in the primary review. Two additional studies were reported there [80, 81] which used ICD-codes (not laboratory-confirmed) for outcome assessment.

In the update, we identified one NRSI [30]. The authors reported rVE against hospitalisation due to influenza (laboratory-confirmed) from two consecutive seasons (2018–2020). Relative VE against all strains was 59.2% (95%CI: 14.6 to 80.5%). For influenza A, rVE was 63.7% (95%CI: 22.8 to 82.9%).

Influenza-related death

No studies reported on this outcome, either in the primary review or in the update.

Secondary efficacy/effectiveness outcomes

Influenza related ICU admissions

No studies reported on this outcome, either in the primary review or in the update.

Influenza associated pneumonia/lower respiratory tract disease

No studies were identified matching the inclusion criteria of this update. In the primary review, two additional studies were reported [82, 83] which used ICD-codes (not laboratory-confirmed) for outcome assessment.

Influenza-associated cardiovascular disease

No studies reported on this outcome, either in the primary review or in the update.

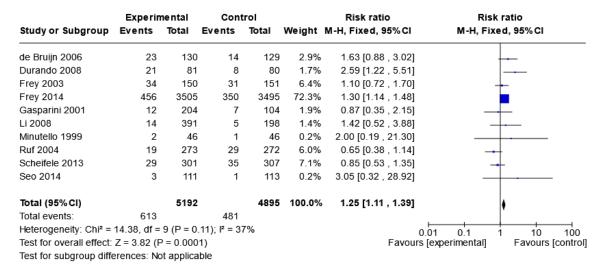
Influenza-like illness

No studies matching the inclusion criteria of this update were identified. In the primary review, one additional studies was reported [84] which used a case definition not covered by the protocol of this review.

Safety

Primary safety outcomes

Serious adverse events


In the primary review, three RCTs and two NRSI were identified as reporting serious adverse events (SAE). In the RCTs [56, 85, 86], a total of three SAE were identified in the MF59-adjuvanted vaccine group, and three SAEs were found in the standard vaccine group (including one case of Guillain-Barré-Syndrome). The NRSIs reported no cases of narcolepsy in both study groups (MF59-adjuvanted vaccine and standard vaccine) [87] and no group difference in hospitalised SAE [88]. No additional studies were identified in the update. The pooled relative risk of SAE after vaccination with MF59-ajuvanted influenza vaccine compared to standard influenza vaccine was 0.95 (95%CI: 0.19 to 4.72; fixed-effects model).

Secondary safety outcomes

Systemic adverse events

In the basic review, 10 RCTs were included which reported on headache after vaccination. A funnel plot and visual inspection for small study effects was performed (Annex 4). No evidence for publication bias could be found. The pooled risk ratio was 1.25 (95%CI: 1.11 to 1.39) in the fixed--effects model and 1.19 (95%CI: 0.88 to 1.61) according to the random effects model (Figure 2). The figure of the random-effects model is shown in Annex 5 (Figure 21). No additional studies were identified in the update.

Figure 2. Relative risk of headache after vaccination with MF59-adjuvanted influenza vaccine versus standard influenza vaccine (fixed-effects model)

Nine RCTs were included in the primary review reporting on fever after vaccination. The pooled risk ratio was 1.83 (95%CI: 1.49 to 2.23) in the fixed effects model and 1.97 (95%CI: 1.07 to 3.61) according to the random effects model (Figure 3). The figure of the random effects model is shown in Annex 5 (Figure 22). No additional studies were identified in the update.

Figure 2. Relative risk of fever after vaccination with MF59-adjuvanted influenza vaccine versus standard influenza vaccine (fixed-effects model)

	Experin	ne ntal	Cont	rol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Cowling 2019	16	508	7	508	4.9%	2.29 [0.95 , 5.51]	
de Lusignan 2021	2	273	4	272	2.8%	0.50 [0.09 , 2.70]	
Durando 2008	23	81	4	80	2.8%	5.68 [2.06 , 15.68]	
Frey 2003	1	150	0	151	0.3%	3.02 [0.12 , 73.54]	
Frey 2014	175	3505	105	3495	73.4%	1.66 [1.31 , 2.11]	-
Gasparini 2001	4	204	. 2	104	1.8%	1.02 [0.19 , 5.48]	<u> </u>
Li 2008	62	391	15	198	13.9%	2.09 [1.22, 3.58]	-
Minutello 1999	0	46	0	46		Not estimable	
Seo 2014	0	111	0	113		Not estimable	
Total (95% CI)		5269		4967	100.0%	1.83 [1.49 , 2.23]	
Total events:	283		137				'
Heterogeneity: Chi ² =	8.72, df = 6	6 (P = 0.1	19); I ² = 319	%		0.	01 0.1 1 10 100
Test for overall effect:	Z = 5.88 (F	o < 0.000	001)				[experimental] Favours [control]
Test for subgroup diffe	erences: No	t applica	able				

Local adverse events

In the primary review, 12 RCTs reported on pain at the injection site after vaccination. A funnel plot and visual inspection for small study effects was performed (Annex 4). No evidence for publication bias could be found.

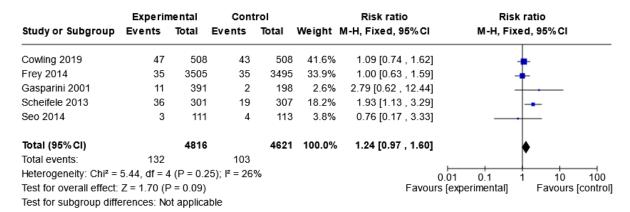

The pooled risk ratio of the fixed effects model was 1.94 (95%CI: 1.80 to 2.10) and 2.02 (95%CI: 1.53 to 2.67) according to the random effects model (Figure 4). The figure of the random effects model is shown in Annex 5 (Figure 23). No additional studies were identified in the update.

Figure 3. Relative risk of pain after vaccination with MF59-adjuvanted influenza vaccine versus standard influenza vaccine (fixed-effects model)

	Experin	ne ntal	Cont	trol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95%Cl	M-H, Fixed, 95% CI
Cowling 2019	64	508	59	508	7.9%	1.08 [0.78 , 1.51]	+
de Bruijn 2006	48	130	12	129	1.6%	3.97 [2.21 , 7.12]	
Durando 2008	44	81	19	80	2.5%	2.29 [1.47, 3.55]	
Frey 2003	135	150	96	151	12.8%	1.42 [1.24 , 1.62]	
Frey 2014	876	3505	419	3495	55.9%	2.08 [1.87, 2.32]	
Gasparini 2001	39	204	11	104	1.9%	1.81 [0.97, 3.38]	-
Li 2008	40	391	6	198	1.1%	3.38 [1.46 , 7.83]	l —
Minutello 1999	19	46	3	46	0.4%	6.33 [2.01 , 19.94]	
Ruf 2004	84	273	46	272	6.1%	1.82 [1.32 , 2.50]	-
Scheifele 2013	114	301	64	307	8.4%	1.82 [1.40 , 2.36]	-
Seo 2014	12	111	8	113	1.1%	1.53 [0.65, 3.59]	
Sindoni 2009	7	96	2	99	0.3%	3.61 [0.77 , 16.94]	
Total (95% CI)		5796		5502	100.0%	1.94 [1.80 , 2.10]	
Total events:	1482		745				'
Heterogeneity: Chi ² =	48.92, df =	11 (P < 0	0.00001);	l² = 78%		0.0	1 0.1 1 10 100
Test for overall effect:	Z = 16.80	P < 0.00	001)				experimental] Favours [control
Test for subgroup diffe	erences: No	t applica	ble				

Swelling at the injection site was reported in five RCTs included in the primary review. The pooled risk ratio was 1.24 (95%CI: 0.97 to 1.60) in the fixed effects model and 1.28 (95%CI: 0.78 to 2.12) according to the random effects model (Figure 5). The figure of the random effects model is shown in Annex 5 (Figure 24). No additional studies were identified in the update.

Figure 4. Relative risk of swelling after vaccination with MF59-adjuvanted influenza vaccine versus standard influenza vaccine (fixed-effects model)

Adverse pregnancy outcomes after vaccination during pregnancy

No studies reported on this outcome, either in the primary review or in the update.

Adverse neonatal outcomes after vaccination during pregnancy

No studies reported on this outcome, either in the primary review or in the update.

4.3.2 High-dose influenza vaccine

Efficacy/effectiveness

Primary efficacy/effectiveness outcomes

Laboratory-confirmed influenza

In the primary review, one RCT was included that reported an rVE of 24.2% (95%CI: 9.7 to 36.5%) against laboratory-confirmed influenza (all strains) during two consecutive seasons (2011–2013) [38].

In the update, we identified one NRSI [24] which reported rVE estimates against influenza A for four consecutive seasons (2015–2019). Relative VE ranged between -9% and 19%, with none of the estimates being statistically significant (see Table 22).

Influenza-related hospitalisation

No studies matching the inclusion criteria of this update were identified in the primary review. There were two additional studies [80, 81] which used ICD-codes (not laboratory-confirmed) for outcome assessment.

In the update, we identified one NRSI [25]. Relative VE against hospitalisation due to influenza (laboratory-confirmed) was reported for two consecutive seasons against influenza A, B and all strains separately. Relative VE against all strains was 27% (95%CI: -1 to 48). None of the rVE estimates ranging between 22 and 44% were statistically significant (see Table 22).

Table 15. Relative vaccine effectiveness of high-dose versus standard influenza vaccine against laboratory-confirmed influenza and influenza-related hospitalisation (laboratory-confirmed)

Study	Study design	rVE	95% CI	Season
Laboratory-confirme	ed influen	za		
All strains				
Diaz-Granados 2014	RCT	24.2%	9.7 to 36.5%	2011–2013
A				
Balasubramani 2020	NRSI	10%	-15 to 30%	2015–2019
Balasubramani 2020	NRSI	-9%	-158 to 54%	2015–2016
Balasubramani 2020	NRSI	2%	-69 to 43%	2016–2017
Balasubramani 2020	NRSI	6%	-55 to 43%	2017–2018
Balasubramani 2020	NRSI	19%	-27 to 48%	2018–2019
Influenza-related ho	ospitalisa	tion (lab	-confirmed)	
All strains				
Doyle 2020	NRSI	27%	-1 to 48%	2015–2017
Doyle 2020	NRSI	24%	-46 to 61%	2015–2016
Doyle 2020	NRSI	27%	-8 to 50%	2016–2017
A	'			
Doyle 2020	NRSI	22%	-15 to 46%	2015–2017
В				
Doyle 2020	NRSI	44%	-13 to 73%	2015–2017

Influenza-related death

No studies reported on this outcome, either in the primary review or in the update.

Secondary efficacy/effectiveness outcomes

Influenza related ICU admissions

No studies reported on this outcome, either in the primary review or in the update.

Influenza associated pneumonia/lower respiratory tract disease

No study was identified matching the inclusion criteria for this update. In the primary review, three additional studies were reported [89-91] which used ICD-codes or claims data (neither being laboratory-confirmed) for outcome assessment.

Influenza-associated cardiovascular disease

No studies reported on this outcome, either in the primary review or in the update.

Influenza-like illness

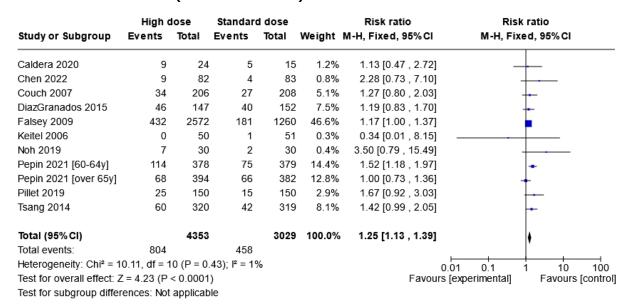
No study was identified matching the inclusion criteria of this update. In the primary review, one additional study was reported [91] which used a case definition derived from claims data not covered by the protocol of this review.

Safety

Primary safety outcomes

Serious adverse events

In the primary review, six SAEs, including neuropathy, cranial nerve VI palsy, shock, Crohn's disease, myasthenia gravis and encephalomyelitis, were reported in three RCTs after high-dose vaccine administration [63, 64, 92]. One NRSI reported no increased risk of Guillain-Barré syndrome in the primary analysis [93].


In the update, we identified three RCTs and one NRSI reporting data on serious adverse events. Two of the RCTs (Chen 2022, Sanchez 2023) did not observe SAEs in their study groups. One RCT [44] reported five SAEs [60-64 years: 1; \geq 65 years: 4] in the high-dose vaccine group and seven SAEs (60–64 years: 2; \geq 65 years: 5) in the standard vaccine group. One NRSI [43] did not find an increased risk of seizure (RR: 1.03 [95% CI: 0.81 to 1.32]), encephalopathy (RR: 0.94 [95% CI: 0.78 to 1.14]) or short-term death (RR: 1.09 [95% CI: 0.8 to 1.48]) after high-dose vaccine, compared to standard vaccine. The pooled relative risk of SAE after vaccination with high-dose influenza vaccine compared to standard influenza vaccine was 1.02 (95%CI: 0.42 to 2.46; fixed-effects model).

Secondary safety outcomes

Systemic adverse events

For headaches, the primary review included data from seven RCTs that resulted in a pooled RR of 1.24 (95%CI: 1.09 to 1.40; fixed effects model; random-effects model: 1.36; 95%CI: 1.02 to 1.77). In the update, we identified three additional RCTs [41, 42, 44] which provided four estimates. Adding these data to the evidence base led to an updated pooled RR of 1.25 (95%CI: 1.13 to 1.39; fixed effects model; random effects model: 1.53 [95%CI: 0.92 to 2.55]) (see Figure 6). A funnel plot and visual inspection for small study effects was performed (Annex 4). No evidence for publication bias could be found. The figure of the random-effects model is shown in Annex 5 (Figure 25).

Figure 5. Relative risk of headache after vaccination with high-dose influenza vaccine versus standard influenza vaccine (fixed-effects model)

Fever was reported in seven RCTs in the primary review. The pooled RR was 1.83 (95%CI: 1.29 to 2.60) by fixed effects model and 2.06 (95%CI: 0.84 to 5.06) by random effects model. In the update, three additional studies (two RCT, one NRSI] were found [41-43]. Adding the RCT data to the evidence base resulted in an updated pooled RR of 1.85 (95%CI: 1.31 to 2.61; fixed effects model; random effects model: 1.78 (95%CI: 1.25 to 2.54) (see Figure 7). The figure of the random effects model is shown in Annex 5 (Figure 26). In addition, the NRSI [43] reported an RR of 0.92 (95%CI: 0.78 to 1.08).

Figure 6. Relative risk of fever after vaccination with high-dose influenza vaccine versus standard influenza vaccine (fixed-effects model)

	High dose		Standard	d dose		Risk ratio	Risk ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI		
Caldera 2020	1	24	. 0	15	1.2%	1.92 [0.08 , 44.29]			
Chen 2022	1	82	0	83	1.0%	3.04 [0.13 , 73.46]			
Couch 2007	9	206	1	208	2.0%	9.09 [1.16 , 71.08]			
DiazGranados 2015	1	147	0	152	1.0%	3.10 [0.13 , 75.52]			
Falsey 2009	92	2569	29	1258	76.3%	1.55 [1.03 , 2.35]	=		
Keitel 2006	0	50	1	51	2.9%	0.34 [0.01 , 8.15]			
Noh 2019	0	30	0	10		Not estimable			
Pillet 2019	2	150	2	150	3.9%	1.00 [0.14 , 7.01]			
Tsang 2014	18	320	6	319	11.8%	2.99 [1.20 , 7.44]			
Total (95% CI)		3578		2246	100.0%	1.85 [1.31 , 2.61]	•		
Total events:	124		39				*		
Heterogeneity: Chi ² = 5.72, df = 7 (P = 0.57); $ ^2$ = 0% Test for overall effect: Z = 3.48 (P = 0.0005)						0.0 Favours [e	1 0.1 1 10 100 experimental] Favours [control]		
Test for subgroup diffe	erences. No	л арриса	ine						

Local adverse events

Pain at the injection site after vaccination was reported in seven RCTs in the primary review. Pooled RR after high-dose vaccine compared to standard vaccine was 1.55 (95%CI: 1.43 to 1.67) using the fixed effects model and 1.56 (95%CI: 1.26 to 1.93) according to the random effects model. The figure of the random effects model is shown in Annex 5 (Figure 27).

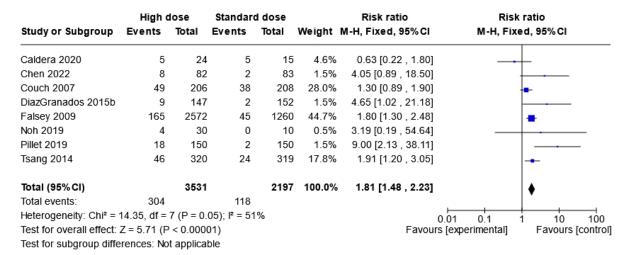

The update identified five additional studies (four RCTs, one NRSI) reporting six estimates. After adding the RCT data to the evidence base, the updated pooled RR was 1.40 (95%CI: 1.33 to 1.48); fixed effects model; random effects model: 1.52 (95%CI: 1.29 to 1.80) (see Figure 8). The NRSI [43] reported an RR of 1.23 (95%CI: 1.12 to 1.34). A funnel plot and visual inspection for small study effects was performed (Annex 4). No evidence for publication bias could be found.

Figure 7. Relative risk of pain after vaccination with high-dose influenza vaccine versus standard influenza vaccine (fixed-effects model)

	High o	iose	Standar	t dose		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Caldera 2020	10	24	4	15	0.4%	1.56 [0.60 , 4.10]	
Chen 2022	37	82	30	83	2.1%	1.25 [0.86 , 1.81]	 -
Couch 2007	83	206	41	208	2.9%	2.04 [1.48 , 2.82]	-
DiazGranados 2015	112	147	85	152	6.0%	1.36 [1.15 , 1.61]	-
Falsey 2009	915	2572	306	1260	29.5%	1.46 [1.31 , 1.64]	
Keitel 2006	31	50	21	51	1.5%	1.51 [1.02 , 2.23]	-
Noh 2019	20	30	7	10	0.8%	0.95 [0.59 , 1.54]	+
Pepin 2021 [60-64y]	195	378	89	379	6.4%	2.20 [1.79 , 2.70]	-
Pepin 2021 [over 65y]	115	394	70	382	5.1%	1.59 [1.23 , 2.07]	-
Pillet 2019	96	150	58	150	4.2%	1.66 [1.31 , 2.09]	-
Sanchez 2023	546	1049	515	1051	37.0%	1.06 [0.98 , 1.16]	•
Tsang 2014	119	320	58	319	4.2%	2.05 [1.56 , 2.69]	+
Total (95% CI)		5402		4060	100.0%	1.40 [1.33 , 1.48]	
Total events:	2279		1284				l'
Heterogeneity: Chi ² = 7	8.92, df = 1	I1 (P < 0	.00001); l²	= 86%		0.01	1 0.1 1 10 100
Test for overall effect: 2	z = 12.23 (F	o < 0.000	01)				xperimental] Favours [control]
Test for subgroup differ	rences: Not	applicat	ole				

Injection site swelling after vaccination was reported in six RCTs in the primary review. The pooled RR across these studies was 1.84 (95%CI: 1.49 to 2.27) according to the fixed effects model and 2.20 (95%CI: 1.12 to 4.32) using the random effects model. In the update, two additional RCTs were identified [41, 42]. Adding their data to the evidence base resulted in an updated pooled RR of 1.81 (95%CI: 1.48 to 2.23; fixed effects model; random effects model: (1.85 [95%CI: 1.27 to 2.71]) (see Figure 9). The figure of the random effects model is shown in Annex 5 (Figure 28).

Figure 8. Relative risk of swelling after vaccination with high-dose influenza vaccine versus standard influenza vaccine (fixed-effects model)

Adverse pregnancy outcomes after vaccination during pregnancy

No studies reported on this outcome, either in the primary review or in the update.

Adverse neonatal outcomes after vaccination during pregnancy

No studies reported on this outcome, either in the primary review or in the update.

4.3.3 Cell-based influenza vaccine

Efficacy/effectiveness

Primary efficacy/effectiveness outcomes

Laboratory-confirmed influenza

In the primary review, one NRSI [39] was included reporting rVE against laboratory-confirmed influenza (all strains and A/H3N2) for two seasons (2014–2015 and 2017–2018). In the update, we identified one additional NRSI [26] which reported rVE estimates against influenza A and B for one season (2017–2018). Relative VE in these two studies ranged between -5.8% and 21.4%, with none of the estimates being statistically significant (see Table 23 for details).

Influenza-related hospitalisation

No studies matching the inclusion criteria of this update were identified in the primary review. One additional study was reported there [80] which used ICD-codes (not laboratory-confirmed) for outcome assessment.

In the update, we identified one NRSI [27]. Relative VE against hospitalisation due to influenza (laboratory-confirmed) was reported for one season (2017–2018), against influenza A and B separately. None of the rVE estimates, ranging between 1.8 and 24.9%, were statistically significant (see Table 23).

Table 16. Relative vaccine effectiveness of cell-based versus standard influenza vaccine influenza vaccine against laboratory-confirmed influenza and influenza-related hospitalisation (laboratory-confirmed)

Study	Study design	rVE	95% CI	Season
Laboratory-confir	med influenza			
All strains				
Bruxvoort 2019	NRSI	6%	-46 to 39%	2014-2015
A (H3N2)				
Bruxvoort 2019	NRSI	4%	-70 to 37%	2014-2015
A				
Klein 2020	NRSI	-5.8%	36.1 to 17.7%	2017-2018
В				
Klein 2020	NRSI	21.4%	-7.3 to 42.4%	2017-2018
Influenza-related	hospitalisation (lab	o-confirmed)		
All strains				
Martin 2021	NRSI	8.5%	-75.9 to 52.3%	2017-2018
A				
Martin 2021	NRSI	24.9%	-78.8 to 68.5%	2017-2018
В				
Martin 2021	NRSI	1.8%	-254 to 72.8%	2017-2018

Influenza-related death

No studies reported on this outcome, either in the primary review or in the update.

Secondary efficacy/effectiveness outcomes

Influenza related ICU admissions

No studies reported on this outcome, either in the primary review or in the update.

Influenza associated pneumonia/lower respiratory tract disease

No studies reported on this outcome, either in the primary review or in the update.

Influenza-associated cardiovascular disease

No studies reported on this outcome, either in the primary review or in the update.

Influenza-like illness

No studies reported on this outcome, either in the primary review or in the update.

Safety

Primary safety outcomes

Serious adverse events

In the primary review, one SAE (hypersensitivity) was reported in one RCT after cell-based vaccine administration [69]. The relative risk of SAE after vaccination with cell-based influenza vaccine compared to standard influenza vaccine was 0.39 (95%CI: 0.02 to 9.49; fixed-effects model).

No additional data were identified in the update.

Secondary safety outcomes

Systemic adverse events

In the primary review, headaches were reported from six RCTs. Pooled RR was 1.03 (95%CI: 0.94 to 1.12; fixed effects model; random-effects model: 1.05; 95%CI: 0.91 to 1.21) (see Figure 10). The figure of the random effects model is shown in Annex 5 (Figure 29). No additional studies were identified in the update.

Figure 9. Relative risk of headache after vaccination with cell-based influenza vaccine versus standard influenza vaccine (fixed-effects model)

	Experin	ne ntal	Cont	trol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Chen 2022	29	120	25	120	2.8%	1.16 [0.72 , 1.86]	1 +
Ehrlich 2012a	389	2842	39	366	7.7%	1.28 [0.94 , 1.75]	l -
Frey 2010	566	3776	546	3638	62.1%	1.00 [0.90 , 1.11]] 📥
Halperin 2002	128	522	56	209	8.9%	0.92 [0.70 , 1.20]	ı -
Song 2015	130	1045	9	104	1.8%	1.44 [0.75 , 2.74]	1 +
Szymczakiewicz-Multanowska 2009	150	1330	149	1324	16.7%	1.00 [0.81 , 1.24]	1
Total (95% CI)		9635		5761	100.0%	1.03 [0.94 , 1.12]	ı
Total events:	1392		824				
Heterogeneity: Chi ² = 4.30, df = 5 (F	e = 0.51); l²	= 0%					0.01 0.1 1 10 100
Test for overall effect: Z = 0.60 (P =	0.55)					Favou	urs [experimental] Favours [control]
Test for subgroup differences: Not a	pplicable						

Six RCTs were identified in the primary review which provided data on fever after vaccination. Using a fixed effects model, the pooled RR was 1.05 (95%CI: 0.73 to 1.52); using a random effects model, pooled RR was 1.01 (95%CI: 0.51 to 2.0) (see Figure 11). The figure of the random effects model is shown in Annex 5 (Figure 30). No additional studies were identified in the update.

Figure 10. Relative risk of fever after vaccination with cell-based influenza vaccine versus standard influenza vaccine (fixed-effects model)

	Experin	ne ntal	Cont	rol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Ehrlich 2012a	61	2842	3	366	9.2%	2.62 [0.83 , 8.30]	-
Frey 2010	34	3776	33	3638	58.4%	0.99 [0.62 , 1.60]	•
Groth 2009	0	120	1	120	2.6%	0.33 [0.01 , 8.10]	
Halperin 2002	10	522	5	209	12.4%	0.80 [0.28 , 2.31]	
Song 2015	0	1045	0	104		Not estimable	
Szymczakiewicz-Multanowska 2009	7	1330	10	1324	17.4%	0.70 [0.27 , 1.83]	-+
Total (95% CI)		9635		5761	100.0%	1.05 [0.73 , 1.52]	•
Total events:	112		52				Ĭ
Heterogeneity: Chi ² = 3.91, df = 4 (F	o = 0.42); l ²	= 0%					0.01 0.1 1 10 100
Test for overall effect: Z = 0.26 (P =	0.79)						s [experimental] Favours [control]
Test for subgroup differences: Not a	pplicable						

Local adverse events

For pain at the injection site after vaccination, the primary review reported data from five RCTs, with a pooled RR of 1.22 (95%CI: 1.15 to 1.31, fixed effects model; random effects model: 1.19 [95%CI: 0.98 to 1.44]) (see Figure 12). The figure of the random effects model is shown in Annex 5 (Figure 31). No additional data were identified in the update.

Figure 11. Relative risk of pain after vaccination with cell-based influenza vaccine versus standard influenza vaccine (fixed-effects model)

	Experin	ne ntal	Conf	trol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Ehrlich 2012a	744	2842	99	366	13.7%	0.97 [0.81 , 1.16]	
Frey 2010	1133	3776	873	3638	69.4%	1.25 [1.16 , 1.35]	•
Groth 2009	29	120	25	120	1.9%	1.16 [0.72 , 1.86]	-
Song 2015	304	1045	27	104	3.8%	1.12 [0.80 , 1.57]	+
Szymczakiewicz-Multanowska 2009	205	1330	143	1324	11.2%	1.43 [1.17 , 1.74]	•
Total (95% CI)		9113		5552	100.0%	1.22 [1.15 , 1.31]	
Total events:	2415		1167				ľ
Heterogeneity: Chi2 = 9.49, df = 4 (F	o = 0.05); l²	= 58%					0.01 0.1 1 10 100
Test for overall effect: Z = 6.21 (P <	0.00001)						s [experimental] Favours [control]
Test for subgroup differences: Not a	pplicable						

In the primary review swelling at the injection site after vaccination was reported in six RCTs. Using a fixed effects model, the RR was 1.15 (95%CI: 0.99 to 1.34), while the RR using a random effects model was 1.08 (95%CI: 0.77 to 1.51) (Figure 13). The figure of the random effects model is shown in Annex 5 (Figure 32). No additional data were identified in the update.

Figure 12. Relative risk of swelling after vaccination with cell-based influenza vaccine versus standard influenza vaccine (fixed-effects model)

	Experin	ne ntal	Cont	rol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Ehrlich 2012a	117	2842	8	366	4.8%	1.88 [0.93 , 3.82]]
Frey 2003	225	3776	179	3638	61.8%	1.21 [1.00 , 1.47]] 🖢
Groth 2009	17	120	26	120	8.8%	0.65 [0.37 , 1.14]	1
Halperin 2002	41	522	16	209	7.7%	1.03 [0.59 , 1.79]	1 +
Song 2015	24	1045	3	104	1.9%	0.80 [0.24 , 2.60]	1 —
Szymczakiewicz-Multanowska 2009	48	1330	44	1324	15.0%	1.09 [0.73 , 1.62]	1 +
Total (95% CI)		9635		5761	100.0%	1.15 [0.99 , 1.34]	1
Total events:	472		276				ľ
Heterogeneity: Chi ² = 6.72, df = 5 (F	o = 0.24); l2	= 26%					0.01 0.1 1 10 100
Test for overall effect: Z = 1.84 (P =	0.07)					Favou	urs [experimental] Favours [control
Test for subgroup differences: Not a	pplicable						

Adverse pregnancy outcomes after vaccination during pregnancy

No studies reported on this outcome, either in the primary review or in the update.

Adverse neonatal outcomes after vaccination during pregnancy

No studies reported on this outcome, either in the primary review or in the update.

4.3.4 Recombinant influenza vaccine

Efficacy/effectiveness

Primary efficacy/effectiveness outcomes

Laboratory-confirmed influenza

In the primary review, one RCT was included that reported rVE estimates from one season (2014–2015) for all strains and influenza A and B separately [40]. Relative VE against all strains was 30% (95%CI: 10 to 47%), 36% (95%CI: 14 to 53%) against influenza A and 4% (95%CI: -42 to 56%) against influenza B.

In the update, we identified one NRSI [28] which reported rVE estimates (all strains) during two consecutive seasons (2018–2019). Relative VE ranged between -3% and 6%, with none of the estimates being statistically significant (see Table 24 for details).

Influenza-related hospitalisation

No studies matching the inclusion criteria of this update were identified in the primary review.

In the update, we identified one cluster-RCT [29] which reported rVE data for two separate age groups obtained during two consecutive seasons (2018–2020). Relative VE was -7.3% (95%CI: -52.1 to 24.4%) for the age group 18–49 years and 16.3% (95%CI: -8.7 to 35.5%) for the age group 50–64 years (Table 24).

Table 17. Relative vaccine effectiveness of recombinant versus standard influenza vaccine against laboratory-confirmed influenza and influenza-related hospitalisation (laboratory-confirmed)

Study	Study design	rVE	95% CI	Season
Laboratory-confirm	med influenza			
All strains				
Dunkle 2017	RCT	30%	10 to 47%	2014-2015
Zimmerman 2023	NRSI	3%	-31 to 28%	2018-2020
Zimmerman 2023	NRSI	6%	-48 to 40%	2018-2019
Zimmerman 2023	NRSI	-3%	-52 to 30%	2019-2020
A				
Dunkle 2017	RCT	36%	14 to 53%	2014-2015
В				
Dunkle 2017	RCT	4%	-42 to 56%	2014-2015
Influenza-related	hospitalisation (lab	-confirmed)		
Age 18-49 years				
Hsiao 2022	RCT	-7.3%	-52.1 to 24.4%	2018-2020
Age 50-64 years				
Hsiao 2022	RCT	16.3%	-8.7 to 35.5%	2018-2020

Influenza-related death

No studies reported on this outcome, either in the primary review or in the update.

Secondary efficacy/effectiveness outcomes

Influenza related ICU admissions

No studies reported on this outcome, either in the primary review or in the update.

Influenza associated pneumonia/lower respiratory tract disease

No studies reported on this outcome, either in the primary review or in the update.

Influenza-associated cardiovascular disease

No studies reported on this outcome, either in the primary review or in the update.

Influenza-like illness

No studies reported on this outcome, either in the primary review or in the update.

Safety

Primary safety outcomes

Serious adverse events

In the primary review, two RCTs reported two SAE (syncope; pericardial effusion) after administration of the recombinant vaccine [76, 94]. The pooled relative risk of SAE after vaccination with recombinant influenza vaccine compared to standard influenza vaccine was 3.04 (95%CI: 0.32 to 29.10; fixed-effects model).

In the update, two NRSI were identified which reported on various SAEs. One NRSI [50] reported no significantly increased risk of death (OR 0.49 [95%CI: 0.21 to 1.05]), idiopathic thrombocytopenic purpura (OR 0.90 [95%CI: 0.03 to 11.81]), non-infectious pleural effusion (OR 1.76 [95%CI: 0.05 to 68.70]) and convulsion (OR 0.90 [95%CI: 0.03 to 11.81]) after recombinant vaccine, compared to standard vaccine. The other NRSI [49] found no increased risk of Guillain-Barré syndrome in inpatient or emergency department settings (OR 0 [95%CI: 0 to 16.07]) or in outpatients (OR 0 [95%CI: 0 to 112.6]). Furthermore, they did not detect an increased risk of non-infectious pleural effusion (OR 0 [95%CI: 0 to 4.8]) or narcolepsy/cataplexy (OR 0 [95%CI: 0 to 6]).

Secondary safety outcomes

Systemic adverse events

Headache after administration of the recombinant vaccine was reported by five RCTs in the primary review. According to the fixed effects model, pooled RR was 0.87 (95%CI: 0.76 to 1.01), while it was 0.79 (95%CI: 0.32 to 1.98) using the random effects model (Figure 14). The figure of the random effects model is shown in Annex 5.

Figure 13. Relative risk of headache after vaccination with recombinant influenza vaccine versus standard influenza vaccine (fixed-effects model)


	Experin	ne ntal	Cont	trol		Risk ratio	Risk ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95%CI	M-H, Fixed, 95% CI	
Baxter 2011	13	300	63	302	17.2%	0.21 [0.12 , 0.37]	-	
Dunkle 2017a	143	4328	145	4344	39.6%	0.99 [0.79 , 1.24]	•	
Dunkle 2017b	202	994	70	332	28.7%	0.96 [0.76 , 1.23]	+	
Keitel 2009	48	436	43	433	11.8%	1.11 [0.75 , 1.64]	+	
Treanor 2006	14	100	10	99	2.7%	1.39 [0.65 , 2.97]	+-	
Total (95% CI)		6158		5510	100.0%	0.87 [0.76 , 1.01]		
Total events:	420		331				1	
Heterogeneity: Chi2 =	28.60, df =	4 (P < 0	.00001); l²	= 86%			0.01 0.1 1 10 1	00
Test for overall effect:	Z = 1.87 (F	P = 0.06				Favou	rs [experimental] Favours [cor	
Test for subgroup diffe	erences: No	ot applica	able					_

In the primary review, no studies were included that reported on fever. In the update, we identified two NRSI which reported data on this outcome [49, 50]. Neither studies found an increased risk of fever (RR 0 [95%CI: 0 to 1.47) [50]; RR inpatients: 0.38 (95%CI: 0.14 to 0.9); RR outpatients: 1.02 (95%CI: 0.6 to 1.74) [49].

Local adverse events

Seven RCTs were identified by the primary review reporting data on pain at the injection site. Pooled RR was 0.89 (95%CI: 0.84 to 0.95) by fixed effects model and 0.04 (95%CI: 0.73 to 1.21) by random effects model. The figure of the random effects model is shown in Annex 5 (Figure 34). No additional data were identified in the update.

Figure 14. Relative risk of pain after vaccination with recombinant influenza vaccine versus standard influenza vaccine (fixed-effects model)

Data on injection site swelling were provided by six RCTs in the primary review. According to the fixed effects model, pooled RR was 1.04 (95%CI: 0.87 to 1.24) and 0.91 (95%CI: 0.48 to 1.72) using the random effects model. The figure of the random effects model is shown in Annex 5 (Figure 35). No additional data were identified in the update.

Figure 15. Relative risk of swelling after vaccination with recombinant influenza vaccine versus standard influenza vaccine (fixed-effects model)

	Experin	ne ntal	Cont	trol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Baxter 2011	25	200	30	302	10.2%	1.26 [0.76 , 2.07]	-
Cowling 2019	13	335	43	508	14.6%	0.46 [0.25, 0.84]	
Dunkle 2017a	142	4307	115	4319	49.0%	1.24 [0.97 , 1.58]	•
Dunkle 2017b	49	996	10	332	6.4%	1.63 [0.84 , 3.19]	
Keitel 2009	31	436	43	433	18.4%	0.72 [0.46 , 1.11]	
Treanor 2006	0	100	3	99	1.5%	0.14 [0.01 , 2.70]	
Total (95% CI)		6374		5993	100.0%	1.04 [0.87 , 1.24]	•
Total events:	260		244				Ī
Heterogeneity: Chi2 =	15.84, df =	5 (P = 0	.007); l2 =	68%			0.01 0.1 1 10 100
Test for overall effect:	Z = 0.43 (F	P = 0.67)					s [experimental] Favours [control]
Test for subgroup diffe	erences: No	ot applica	able				

Adverse pregnancy outcomes after vaccination during pregnancy

No studies reported on this outcome, either in the primary review or in the update.

Adverse neonatal outcomes after vaccination during pregnancy

No studies reported on this outcome, either in the primary review or in the update.

4.3.5 mRNA-based influenza vaccine

Efficacy/effectiveness

Primary efficacy/effectiveness outcomes

Laboratory-confirmed influenza

No studies reported on this outcome.

Influenza-related hospitalisation

No studies reported on this outcome.

Influenza-related death

No studies reported on this outcome.

Secondary efficacy/effectiveness outcomes

Influenza related ICU admissions

No studies reported on this outcome.

Influenza associated pneumonia/lower respiratory tract disease

No studies reported on this outcome.

Influenza-associated cardiovascular disease

No studies reported on this outcome.

Influenza-like illness

No studies reported on this outcome.

Safety

Primary safety outcomes

Serious adverse events

No studies reported on this outcome.

Secondary safety outcomes

Systemic adverse events

No studies reported on this outcome.

Local adverse events

No studies reported on this outcome.

Adverse pregnancy outcomes after vaccination during pregnancy

No studies reported on this outcome.

Adverse neonatal outcomes after vaccination during pregnancy

No studies reported on this outcome.

4.4 Subgroup analysis

Subgroup analysis was not performed due to lack of data.

5. Discussion

This systematic review update included a total of 59 studies. This included the 17 studies (seven on efficacy/effectiveness, 10 on safety) from this update review and the 42 studies (10 on efficacy/effectiveness, 32 on safety) from the primary review (that met the inclusion criteria for this updated review). Risk of bias of the newly identified studies varied, from moderate in effectiveness studies to low-to-serious in safety studies.

For the MF59-adjuvanted vaccine, rVE against laboratory-confirmed influenza was -30% (95%CI: -146 to 31%) to 88% (95%CI: 51 to 100%) (seven NRSI; low certainty of evidence). Relative VE against laboratory-confirmed influenza-related hospitalisation (all strains) was 59.2% (95%CI: 15.6 to 80.5%) (one NRSI; moderate certainty). No data were available for VE against influenza-related death. No increased risk was detected regarding MF59-adjuvanted vaccine related serious adverse events (three RCT, two NRSI; low certainty of evidence).

The high-dose vaccine showed rVE against laboratory-confirmed influenza of 24.2% (95%CI: 9.7 to 36.5%) in one RCT (moderate certainty of evidence) and -9% (95%CI: -158 to 54%) to 19% (95%CI: -27 to 48%) in one NRSI. Relative VE against laboratory-confirmed influenza-related hospitalisation (all strains) was 27% (95%CI: -1 to 48%) (one NRSI; low certainty). No data were available for rVE against influenza-related death. No increased risk was detected regarding high-dose vaccine related serious adverse events (six RCT, three NRSI; low certainty of evidence).

Relative cell-based vaccine efficacy against laboratory-confirmed influenza ranged from -5.8% (95%CI: -36.1 to 17.7%) (influenza A) to 21.4% (95%CI: -7.3 to 42.4%) (influenza B) (two NRSI; low certainty). Relative VE against laboratory-confirmed influenza-related hospitalisation (all strains) was 8.5% (95%CI: -75.9 to 52.3%) (one NRSI; low certainty). No data were available for VE against influenza-related death. No increased risk was detected regarding cell-based vaccine related serious adverse events (one RCT; low certainty of evidence).

For the recombinant vaccine, rVE against laboratory-confirmed influenza ranged from 30% (95%CI: 10 to 47%) in one RCT (moderate certainty) and 3% (95%CI: -31 to 28%) to 19% (95%CI: -27 to 48%) in one NRSI. Relative VE against laboratory-confirmed influenza-related hospitalisation was -7.3% (95%CI: -52.1 to 24.4%) (18–49 years of age) to 16.3% (95%CI: -8.7 to 35.5%) (50–64 years of age) (one RCT; certainty of evidence not assessed due to lack of information). No data were available for rVE against influenza-related death. No increased risk was detected regarding high-dose vaccine related serious adverse events (two RCT, two NRSI; low certainty of evidence).

No studies were found investigating efficacy, effectiveness or safety of mRNA-based vaccines.

Overall completeness and applicability of evidence

The aim of this update of an existing primary systematic review [8] was to re-assess the evidence on the efficacy/effectiveness and safety of newer and/or enhanced influenza vaccines by updating the search, and by narrowing the focus of the research question to comparison with standard vaccines or head-to-head comparison between the enhanced vaccines, allowing for new technologies (mRNA-based vaccines). In addition, the intention was to overcome some methodological weaknesses in the primary review. For example, we no longer included effectiveness outcomes which had not been laboratory-confirmed, with the exception of influenza-like illness (ILI) where we included studies that used internationally accepted outcome definitions (e.g. by WHO or US CDC). The main reason for this decision was that non-randomised studies (observational studies) which do not use laboratory-confirmed outcomes to assess influenza vaccine effectiveness have been shown to be prone to healthy vaccine bias as well as confounding by indication [95]. Moreover, it has been demonstrated that these forms of bias cannot be eliminated by statistical procedures to control for confounding [95]. Consequently, studies using non-laboratory-confirmed ICD-codes or claims data (or compound outcomes derived from such data) which were included in the primary review [80-83, 89, 90, 96-101] were not used in this update.

While new data accumulated since 2020 were reassuring in terms of the safety of the vaccines, the evidence base regarding the efficacy/effectiveness of these vaccines against laboratory-confirmed outcomes has not been substantially improved. On the contrary, for two of the new vaccines (i.e. high-dose vaccine and recombinant vaccine) findings from recent NRSI contradicted previous findings from RCTs regarding VE against laboratory-confirmed influenza. For the high-dose vaccine, the RCT by Diaz-Granados et al. [38] described a relative VE (compared to standard vaccine) of more than 20%, whereas the recent test-negative study by Balasubramani [24], which was assessed to be of moderate risk of bias, did not observe a statistically significant relative VE in any of the four consecutive influenza seasons investigated. Similarly, for the recombinant vaccine, Dunkle et al. [40] found a relative VE of 30% in their RCT, whereas the recent test-negative study by Zimmerman et al. [28] (moderate risk of bias) did not find any effect over two consecutive seasons. While the GRADE certainty of evidence assessments was still based on the RCT data (since in both cases the evidence base from the NRSI was judged to be weaker due to confounding and imprecision), the evidence available at this stage is still limited. Nevertheless, a review of the evidence summarised in this report may help contribute as one of the elements for decision making.

There was one exception where the evidence base on VE had substantially improved. The test-negative design study by Domnich [30] provides, for the first time, rVE estimates against laboratory-confirmed influenza-related hospitalisation for the MF59-adjuvanted vaccine.

After the date of the last search of this update, a study on the relative effectiveness of recombinant influenza vaccine versus standard-dose influenza vaccine was published [102]. This cluster RCT described a rVE of 15.3% (95%CI: 5.9 to 23.8) against laboratory-confirmed influenza. However, due to the cut-off date for inclusion of results in this current systematic review, the full set of results from the study could not be included in this update. Nevertheless, some data on the rVE against influenza-related hospitalisation presented in this RCT have already been published as a congress abstract and are included in this update [29].

The new studies identified in this update which investigated rVE were all assessed to have moderate risk of bias. Compared to the primary review where a substantial number of NRSI included had serious risk of bias, we observed a considerable increase in overall study quality, particularly regarding the consideration of confounders. However, there is still a lack of data regarding a number of laboratory-confirmed outcomes for all vaccines investigated in this review update. The same applies to the head-to-head comparison between the enhanced vaccines, where only one study was identified reporting safety data, but no rVE data were found. Moreover, we identified substantial evidence gaps regarding the safety of these vaccines during pregnancy. Even those studies that included pregnant women did not present appropriate information to be included in our review [49, 50]. It is worth mentioning that recombinant and cell-based vaccines are the only newer and/or enhanced influenza vaccines licenced for women of childbearing age. Furthermore, the planned sub-group analyses (e.g. strain, clade, season) could not be performed due to heterogeneity of studies and outcomes and sparse data per vaccine and outcome. Finally, no data on rVE or safety of the mRNA-vaccines have bee made available to date.

Certainty of the evidence

For this systematic review update, we assessed the certainty of the evidence for the primary efficacy/effectiveness and safety outcomes. Results are summarised below for each of the vaccines investigated.

For the MF59-adjuvanted vaccine, certainty was assessed as being low for the outcome laboratory-confirmed influenza and moderate for influenza-related hospitalisation (one NRSI, downgraded for risk of bias). No assessment was possible for influenza-related death due to lack of data. For serious adverse events, certainty of evidence was low.

For the high-dose vaccine, certainty of evidence was moderate for the outcome laboratory-confirmed influenza (one RCT; downgraded due to risk of bias). Certainty was assessed to be low for influenza-related hospitalisation. No assessment was possible for influenza-related death due to lack of data. For serious adverse events, certainty of evidence was low.

For the cell-based vaccine, certainty of evidence was low for the outcome laboratory-confirmed influenza (two NRSI, downgraded due to risk of bias and inconsistency). Certainty was low for influenza-related hospitalisation (one NRSI; downgraded by one for risk of bias and one for imprecision). No assessment was possible for influenza-related death due to lack of data. For serious adverse events, certainty of evidence was low.

For the recombinant vaccine, certainty of evidence was assessed to be moderate for laboratory-confirmed influenza (one RCT; downgraded due to risk of bias). No assessments were possible for influenza-related hospitalisation (not enough information) or influenza-related death (no data). For serious adverse events, certainty of evidence was low.

Due to lack of data, no certainty of the evidence assessment was possible for the mRNA-based vaccine.

Potential biases in the review process

Regarding potential biases in the study identification process, there is a small chance that our search missed potentially relevant studies. However, this appears unlikely since the search string was built upon the successful strategy of the primary review and was assessed by an experienced information specialist. During the screening process, there remains a small possibility that we overlooked laboratory-confirmed outcomes in studies which were therefore excluded. However, we think that this is unlikely since the review process was conducted by pairs of experienced reviewers and a senior reviewer was involved in every case of uncertainty. Finally, risk of bias assessment is always subjective to some extent and therefore other reviewers might have come to different conclusions. We tried to minimise subjectivity by having pairs of reviewers conduct independent assessments and allowing for an in-depth team discussion of the results of the risk of bias judgements.

Agreements and disagreements with other studies or reviews

As discussed in detail above, the main comparison for this update is the primary review [8] which basically arrived at the same conclusions. We are aware of another systematic review published in 2021 (data cut: 15 July 2020) which analysed the MF59-adjuvanted vaccine [103]. This review came to more favourable conclusions regarding the relative effectiveness of this vaccine. However, the authors also included non-laboratory-confirmed outcomes. It should also be noted that the review was co-authored by representatives of the manufacturer, which constitutes a conflict of interest.

6. Conclusions

This systematic review update shows that the evidence on relative efficacy/effectiveness of newer and/or enhanced influenza vaccines, compared to standard influenza vaccines, is still limited. No efficacy/effectiveness data were found on head-to-head comparison between the enhanced vaccines. Low-to-moderate relative vaccine effectiveness was found for the MF59-adjuvanted vaccine, the high-dose vaccine and the recombinant vaccine for laboratory-confirmed influenza. Low-to-moderate relative vaccine effectiveness was also found for the MF59-adjuvanted vaccine and the high-dose vaccine for laboratory-confirmed influenza-related hospitalisation. A larger evidence base is available on safety (although certainty of evidence was generally low), demonstrating an overall favourable safety profile for all vaccines. The risk of bias was low-to-moderate in all efficacy/effectiveness studies and low-to-serious in safety studies. Further studies are needed, particularly regarding laboratory-confirmed outcomes and safety data, to allow more substantial conclusions on the potential benefits of these vaccines.

References

- World Health Organization (WHO). Factsheet Influenza (Seasonal) 2023. Available from: https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal)
- European Centre for Disease Prevention and Control (ECDC). Factsheet about seasonal influenza 2022. Available from: https://www.ecdc.europa.eu/en/seasonal-influenza/facts/factsheet
- 3. Cowling BJ, Ip DK, Fang VJ, Suntarattiwong P, Olsen SJ, Levy J, et al. Aerosol transmission is an important mode of influenza A virus spread. Nat Commun. 2013;4:1935.
- 4. Cassini A, Colzani E, Pini A, Mangen M-JJ, Plass D, McDonald SA, et al. Impact of infectious diseases on population health using incidence-based disability-adjusted life years (DALYs): results from the Burden of Communicable Diseases in Europe study, European Union and European Economic Area countries, 2009 to 2013. Eurosurveillance. 2018;23(16):17-00454.
- Nielsen J, Vestergaard LS, Richter L, Schmid D, Bustos N, Asikainen T, et al. European all-cause excess and influenzaattributable mortality in the 2017/18 season: should the burden of influenza B be reconsidered? Clin Microbiol Infect. 2019;25(10):1266-76.
- 6. Treanor JJ. Clinical Practice. Influenza Vaccination. N Engl J Med. 2016;375(13):1261-8.
- 7. Paules CI, Sullivan SG, Subbarao K, Fauci AS. Chasing Seasonal Influenza The Need for a Universal Influenza Vaccine. N Engl J Med. 2018;378(1):7-9.
- European Centre for Disease Prevention and Control (ECDC). Systematic review of the efficacy, effectiveness and safety of newer and enhanced seasonal influenza vaccines 2020. Stockholm: ECDC; 2020. Available from: https://www.ecdc.europa.eu/en/publications-data/seasonal-influenza-systematic-review-efficacy-vaccines
- 9. Murchu EO, Comber L, Jordan K, Hawkshaw S, Marshall L, O'Neill M, et al. Systematic review of the efficacy, effectiveness and safety of recombinant haemagglutinin seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Reviews in Medical Virology. 2023;33(3):e2331.
- Jordan K, Murchu EO, Comber L, Hawkshaw S, Marshall L, O'Neill M, et al. Systematic review of the efficacy, effectiveness and safety of cell-based seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Rev Med Virol. 2023;33(3):e2332.
- 11. Comber L, Murchu EO, Jordan K, Hawkshaw S, Marshall L, O'Neill M, et al. Systematic review of the efficacy, effectiveness and safety of high-dose seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Rev Med Virol. 2023;33(3):e2330.
- 12. Murchu EÖ, Comber L, Jordan K, Hawkshaw S, Marshall L, O'Neill M, et al. Systematic review of the efficacy, effectiveness and safety of MF59® adjuvanted seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Rev Med Virol. 2023;33(3):e2329.
- 13. Eamon O Murchu, Laura Comber, Patricia Harrington, Sarah Hawkshaw, Karen Jordan, Liam Marshall, Michelle O'Neill, Conor Teljeur, Mairin Ryan. Systematic review of the efficacy, effectiveness and safety of newer and enhanced seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥ 18 years of age. PROSPERO 2020 CRD42020156800 Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020156800
- 14. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. Press peer review of electronic search strategies: 2015 guideline statement. Journal of Clinical Epidemiology. 2016;75:40-6.
- 15. Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366.
- 16. Higgins JP, Savović J, Page MJ. Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions. Version 6.3 (updated 02/2022).
- 17. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355.
- 18. Page MJ, Higgins JPT, Sterne JAC. Chapter 13: Assessing risk of bias due to missing results in a synthesis. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions. Version 6.3 (updated February 2022).
- 19. Deeks JJ, Higgins JP, Altman DG. Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions, Version 6.3 (updated 02/2022). Cochrane, 2022. Available from: www.training.cochrane.org/handbook
- Deeks JJ, Higgins JP, Altman DG. Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions. Version 6.3 (updated February 2022). Cochrane. 2022.
- 21. Schünemann HJ, Cuello C, Akl EA, Mustafa RA, Meerpohl JJ, Thayer K, et al. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in non-randomized studies should be used to rate the certainty of a body of evidence. J Clin Epidemiol. 2019;111:105-14.
- 22. Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64(4):380-2.
- 23. Santesso N, Glenton C, Dahm P, Garner P, Akl EA, Alper B, et al. GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. Journal of Clinical Epidemiology. 2020;119:126-35.
- 24. Balasubramani GK, Choi WS, Nowalk MP, Zimmerman RK, Monto AS, Martin ET, et al. Relative effectiveness of high dose versus standard dose influenza vaccines in older adult outpatients over four seasons, 2015–16 to 2018–19. Vaccine. 2020;38(42):6562-9.
- 25. Doyle JD, Beacham L, Martin ET, Talbot HK, Monto A, Gaglani M, et al. Relative and Absolute Effectiveness of High-Dose and Standard-Dose Influenza Vaccine Against Influenza-Related Hospitalization Among Older Adults-United States, 2015-2017. Clinical Infectious Diseases: an official publication of the Infectious Diseases Society of America. 2021;72(6):995-1003.
- 26. Klein NP, Fireman B, Goddard K, Zerbo O, Asher J, Zhou J, et al. Vaccine effectiveness of cell-culture relative to egg-based inactivated influenza vaccine during the 2017–18 influenza season. PloS one. 2020;15(2):e0229279.

- 27. Martin ET, Cheng C, Petrie JG, Alyanak E, Gaglani M, Middleton DB, et al. Low Influenza Vaccine Effectiveness Against A(H3N2)-Associated Hospitalizations in 2016–2017 and 2017–2018 of the Hospitalized Adult Influenza Vaccine Effectiveness Network (HAIVEN). The Journal of Infectious Diseases. 2021;223(12):2062-71.
- 28. Zimmerman RK, Dauer K, Clarke L, Nowalk MP, Raviotta JM, Balasubramani GK. Vaccine effectiveness of recombinant and standard dose influenza vaccines against outpatient illness during 2018-2019 and 2019-2020 calculated using a retrospective test-negative design. Human Vaccines and Immunotherapeutics. 2023;19(1):2177461.
- 29. Hsiao A, Yee A, Fireman B, Hansen JR, Lewis N, Klein NP. 2322. Effectiveness of Recombinant Influenza Vaccine vs. Standard Dose Inactivated Influenza Vaccines Against Hospitalized Influenza-Related Outcomes in Adults: A Cluster Randomized Trial. Open Forum Infectious Diseases. 2022;9(Supplement 2).
- 30. Domnich A, Panatto D, Pariani E, Napoli C, Chironna M, Manini I, et al. Relative effectiveness of the adjuvanted vs non-adjuvanted seasonal influenza vaccines against severe laboratory-confirmed influenza among hospitalized Italian older adults. International Journal of Infectious Diseases: Official publication of the International Society for Infectious Diseases. 2022;125:164-9.
- 31. Van Buynder PG, Konrad S, Van Buynder JL, Brodkin E, Krajden M, Ramler G, et al. The comparative effectiveness of adjuvanted and unadjuvanted trivalent inactivated influenza vaccine (TIV) in the elderly. Vaccine. 2013;31(51):6122-8.
- 32. Mira-Iglesias A, López-Labrador FX, Baselga-Moreno V, Tortajada-Girbés M, Mollar-Maseres J, Carballido-Fernández M, et al. Influenza vaccine effectiveness against laboratory-confirmed influenza in hospitalised adults aged 60 years or older, Valencia Region, Spain, 2017/18 influenza season. Eurosurveillance. 2019;24(31).
- 33. Pebody R, Whitaker H, Zhao H, Andrews N, Ellis J, Donati M, et al. Protection provided by influenza vaccine against influenza-related hospitalisation in ≥65 year olds: Early experience of introduction of a newly licensed adjuvanted vaccine in England in 2018/19. Vaccine. 2020;38(2):173-9.
- 34. Pebody RG, Whitaker H, Ellis J, Andrews N, Marques DFP, Cottrell S, et al. End of season influenza vaccine effectiveness in primary care in adults and children in the United Kingdom in 2018/19. Vaccine. 2020;38(3):489-97.
- 35. Bellino S, Bella A, Puzelli S, Di Martino A, Facchini M, Punzo O, et al. Moderate influenza vaccine effectiveness against A(H1N1)pdm09 virus, and low effectiveness against A(H3N2) subtype, 2018/19 season in Italy. Expert Review of Vaccines. 2019;18(11):1201-9.
- 36. Kissling E, Rondy M, Kaić B, Horváth JK, Ferenczi A, Oroszi B, et al. Early 2016/17 vaccine effectiveness estimates against influenza A(H3N2): I-move multicentre case control studies at primary care and hospital levels in Europe. Eurosurveillance. 2017;22(7).
- 37. Rondy M, Larrauri A, Casado I, Alfonsi V, Pitigoi D, Launay O, et al. 2015/16 seasonal vaccine effectiveness against hospitalisation with influenza a(H1N1)pdm09 and B among elderly people in Europe: Results from the I-MOVE+ project. Eurosurveillance. 2017;22(30).
- 38. DiazGranados CA, Dunning AJ, Kimmel M, Kirby D, Treanor J, Collins A, et al. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. New England Journal of Medicine. 2014;371(7):635-45.
- 39. Bruxvoort KJ, Luo Y, Ackerson B, Tanenbaum HC, Sy LS, Gandhi A, et al. Comparison of vaccine effectiveness against influenza hospitalization of cell-based and egg-based influenza vaccines, 2017–2018. Vaccine. 2019;37(39):5807-11.
- 40. Dunkle LM, Izikson R, Patriarca P, Goldenthal KL, Muse D, Callahan J, et al. Efficacy of recombinant influenza vaccine in adults 50 years of age or older. New England Journal of Medicine. 2017;376(25):2427-36.
- 41. Caldera F, Hillman L, Saha S, Wald A, Grimes I, Zhang Y, et al. Immunogenicity of High Dose Influenza Vaccine for Patients with Inflammatory Bowel Disease on Anti-TNF Monotherapy: A Randomized Clinical Trial. Inflammatory Bowel Diseases. 2020;26(4):593-602.
- Chen J-Y, Hsieh S-M, Hwang S-J, Liu C-S, Li X, Fournier M, et al. Immunogenicity and safety of high-dose quadrivalent influenza vaccine in older adults in Taiwan: A phase III, randomized, multi-center study. Vaccine. 2022;40(45):6450-4.
- 43. Layton JB, McGrath LJ, Sahrmann JM, Ma Y, Dharnidharka VR, O'Neil C, et al. Comparative safety of high-dose versus standard-dose influenza vaccination in patients with end-stage renal disease. Vaccine. 2020;38(33):5178-86.
- 44. Pepin S, Nicolas J-F, Szymanski H, Leroux-Roels I, Schaum T, Bonten M, et al. Immunogenicity and safety of a quadrivalent high-dose inactivated influenza vaccine compared with a standard-dose quadrivalent influenza vaccine in healthy people aged 60 years or older: a randomized Phase III trial. Human Vaccines & Immunotherapeutics. 2021;17(12):5475-86.
- 45. Sanchez L, Matsuoka O, Inoue S, Inoue T, Meng Y, Nakama T, et al. Immunogenicity and safety of high-dose quadrivalent influenza vaccine in Japanese adults >=65 years of age: a randomized controlled clinical trial. Human Vaccines & Immunotherapeutics. 2020;16(4):858-66.
- 46. Pillsbury AJ, Fathima P, Quinn HÉ, Cashman P, Blyth CC, Leeb A, et al. Comparative Postmarket Safety Profile of Adjuvanted and High-Dose Influenza Vaccines in Individuals 65 Years or Older. JAMA Network Open. 2020;3(5):e204079.
- 47. Schmader KE, Liu CK, Harrington T, Rountree W, Auerbach H, Walter EB, et al. Safety, Reactogenicity, and Health-Related Quality of Life After Trivalent Adjuvanted vs Trivalent High-Dose Inactivated Influenza Vaccines in Older Adults: A Randomized Clinical Trial. JAMA Network Open. 2021;4(1):e2031266.
- 48. De Lusignan S, Tsang RSM, Akinyemi O, Lopez Bernal J, Ámirthalingam G, Sherlock J, et al. Adverse Events of Interest Following Influenza Vaccination in the First Season of Adjuvanted Trivalent Immunization: Retrospective Cohort Study. JMIR Public Health and Surveillance. 2022;8(3):e25803.
- 49. Hansen J, Goddard K, Timbol J, Zhang L, Lewis N, Dunkle L, et al. Safety of Recombinant Influenza Vaccine Compared to Inactivated Influenza Vaccine in Adults: An Observational Study. Open Forum Infectious Diseases. 2020;7(6):ofaa179.
- 50. Hsiao A, Hansen J, Nunley KV, Lewis N, Selmani A, Inamdar A, et al. Safety of recombinant quadrivalent influenza vaccine compared to inactivated influenza vaccine in Chinese adults: An observational study. Vaccine. 2022;40(5):774-9.
- 51. Cowling BJ, Perera RAPM, Valkenburg SA, Leung NHL, Iuliano AD, Tam YH, et al. Comparative Immunogenicity of Several Enhanced Influenza Vaccine Options for Older Adults: A Randomized, Controlled Trial. Clinical Infectious Diseases: an official publication of the Infectious Diseases Society of America. 2020;71(7):1704-14.
- 52. De Bruijn IA, Nauta J, Gerez L, Palache AM. The virosomal influenza vaccine Invivac®: Immunogenicity and tolerability compared to an adjuvanted influenza vaccine (Fluad®) in elderly subjects. Vaccine. 2006;24(44-46):6629-31.
- 53. Durando P, Fenoglio D, Boschini A, Ansaldi F, Icardi G, Sticchi L, et al. Safety and immunogenicity of two influenza virus subunit vaccines, with or without MF59 adjuvant, administered to human immunodeficiency virus type 1-seropositive and seronegative adults. Clinical and Vaccine Immunology. 2008;15(2):253-9.
- 54. Frey S, Poland G, Percell S, Podda A. Comparison of the safety, tolerability, and immunogenicity of a MF59-adjuvanted influenza vaccine and a non-adjuvanted influenza vaccine in non-elderly adults. Vaccine. 2003;21(27-30):4234-7.

- 55. Gasparini R, Pozzi T, Montomoli E, Fragapane E, Senatore F, Minutello M, et al. Increased immunogenicity of the MF59-adjuvanted influenza vaccine compared to a conventional subunit vaccine in elderly subjects. European Journal of Epidemiology. 2001;17(2):135-40.
- 56. Li R, Fang H, Li Y, Liu Y, Pellegrini M, Podda A. Safety and immunogenicity of an MF59[™]-adjuvanted subunit influenza vaccine in elderly Chinese subjects. Immunity and Ageing. 2008;5.
- 57. Minutello M, Senatore F, Cecchinelli G, Bianchi M, Andreani T, Podda A, et al. Safety and immunogenicity of an inactivated subunit influenza virus vaccine combined with MF59 adjuvant emulsion in elderly subjects, immunized for three consecutive influenza seasons. Vaccine. 1999;17(2):99-104.
- 58. Ruf BR, Colberg K, Frick M, Preusche A. Open, randomized study to compare the immunogenicity and reactogenicity of an influenza split vaccine with an MF59-adjuvanted subunit vaccine and a virosome-based subunit vaccine in elderly. Infection. 2004;32(4):191-8.
- 59. Scheifele DW, McNeil SA, Ward BJ, Dionne M, Cooper C, Coleman B, et al. Safety, immunogenicity, and tolerability of three influenza vaccines in older adults: Results of a randomized, controlled comparison. Human Vaccines and Immunotherapeutics. 2013;9(11):2460-73.
- 60. Seo YB, Choi WS, Lee J, Song JY, Cheong HJ, Kim WJ. Comparison of the immunogenicity and safety of the conventional subunit, MF59-adjuvanted, and intradermal influenza vaccines in the elderly. Clinical and Vaccine Immunology. 2014;21(7):989-96.
- 61. Sindoni D, La Fauci V, Squeri R, Cannavò G, Bacilieri S, Panatto D, et al. Comparison between a conventional subunit vaccine and the MF59-adjuvanted subunit influenza vaccine in the elderly: An evaluation of the safety, tolerability and immunogenicity. Journal of Preventive Medicine and Hygiene. 2009;50(2):121-6.
- 62. Couch RB, Winokur P, Brady R, Belshe R, Chen WH, Cate TR, et al. Safety and immunogenicity of a high dosage trivalent influenza vaccine among elderly subjects. Vaccine. 2007;25(44):7656-63.
- 63. DiazGranados CA, Saway W, Gouaux J, Baron M, Baker J, Denis M, et al. Safety and immunogenicity of high-dose trivalent inactivated influenza vaccine in adults 50-64 years of age. Vaccine. 2015;33(51):7188-93.
- 64. Falsey AR, Treanor JJ, Tornieporth N, Capellan J, Gorse GJ. Randomized, double-blind controlled phase 3 trial comparing the immunogenicity of high-dose and standard-dose influenza vaccine in adults 65 years of age and older. Journal of Infectious Diseases. 2009;200(2):172-80.
- 65. Keitel WA, Atmar RL, Cate TR, Petersen NJ, Greenberg SB, Ruben F, et al. Safety of high doses of influenza vaccine and effect on antibody responses in elderly persons. Archives of Internal Medicine. 2006;166(10):1121-7.
- 66. Tsang P, Gorse GJ, Strout CB, Sperling M, Greenberg DP, Ozol-Godfrey A, et al. Immunogenicity and safety of Fluzone® intradermal and high-dose influenza vaccines in older adults ≥65 years of age: A randomized, controlled, phase II trial. Vaccine. 2014;32(21):2507-17.
- 67. Noh JY, Jang YS, Lee SN, Choi MJ, Yoon JG, Yu DH, et al. Randomized, single-blind, active-controlled phase I clinical trial to evaluate the immunogenicity and safety of GC3114 (high-dose, quadrivalent influenza vaccine) in healthy adults. Vaccine. 2019;37(36):5171-6.
- 68. Pillet S, Couillard J, Trépanier S, Poulin JF, Yassine-Diab B, Guy B, et al. Immunogenicity and safety of a quadrivalent plant-derived virus like particle influenza vaccine candidate—Two randomized Phase II clinical trials in 18 to 49 and 50 years old adults. PLoS ONE. 2019;14(6).
- Ehrlich HJ, Berezuk G, Fritsch S, Aichinger G, Singer J, Portsmouth D, et al. Clinical development of a Vero cell culturederived seasonal influenza vaccine. Vaccine. 2012;30(29):4377-86.
- 70. Frey S, Vesikari T, Szymczakiewicz-Multanowska Á, Làttanzi M, Izu A, Groth N, et al. Clinical efficacy of cell culture–derived and egg-derived inactivated subunit influenza vaccines in healthy adults. Clin Infect Dis. 2010;51(9):997-1004.
- 71. Groth N, Montomoli E, Gentile C, Manini I, Bugarini R, Podda A. Safety, tolerability and immunogenicity of a mammalian cell-culture-derived influenza vaccine: a sequential Phase I and Phase II clinical trial. Vaccine. 2009;27(5):786-91.
- 72. Halperin SA, Smith B, Mabrouk T, Germain M, Trépanier P, Hassell T, et al. Safety and immunogenicity of a trivalent, inactivated, mammalian cell culture-derived influenza vaccine in healthy adults, seniors, and children. Vaccine. 2002;20(7-8):1240-7.
- 73. Song JY, Cheong HJ, Lee J, Woo HJ, Wie SH, Lee JS, et al. Immunogenicity and safety of a cell culture-derived inactivated trivalent influenza vaccine (NBP607): A randomized, double-blind, multi-center, phase 3 clinical trial. Vaccine. 2015;33(41):5437-44.
- 74. Szymczakiewicz-Multanowska A, Groth N, Bugarini R, Lattanzi M, Casula D, Hilbert A, et al. Safety and immunogenicity of a novel influenza subunit vaccine produced in mammalian cell culture. J Infect Dis. 2009;200(6):841-8.
- 75. Dunkle LM, Izikson R, Patriarca PA, Goldenthal KL, Muse D, Cox MMJ. Randomized comparison of immunogenicity and safety of quadrivalent recombinant versus inactivated influenza vaccine in healthy adults 18-49 years of age. Journal of Infectious Diseases. 2017;216(10):1219-26.
- 76. Baxter R, Patriarca PA, Ensor K, Izikson R, Goldenthal KL, Cox MM. Evaluation of the safety, reactogenicity and immunogenicity of FluBlok® trivalent recombinant baculovirus-expressed hemagglutinin influenza vaccine administered intramuscularly to healthy adults 50–64 years of age. Vaccine. 2011;29(12):2272-8.
- 77. Izikson R, Leffell DJ, Bock SA, Patriarca PA, Post P, Dunkle LM, et al. Randomized comparison of the safety of Flublok® versus licensed inactivated influenza vaccine in healthy, medically stable adults ≥ 50 years of age. Vaccine. 2015;33(48):6622-8.
- 78. Keitel WÀ, Treanor JJ, El Sahly HM, Gilbert A, Meyer AL, Patriarca PA, et al. Comparative immunogenicity of recombinant influenza hemagglutinin (rHA) and trivalent inactivated vaccine (TIV) among persons ≥65 years old. Vaccine. 2009;28(2):379-85.
- 79. Treanor JJ, Schiff GM, Couch RB, Cate TR, Brady RC, Hay CM, et al. Dose-related safety and immunogenicity of a trivalent baculovirus-expressed influenza-virus hemagglutinin vaccine in elderly adults. Journal of Infectious Diseases. 2006;193(9):1223-8.
- 80. Izurieta HS, Chillarige Y, Kelman J, Wei Y, Lu Y, Xu W, et al. Relative Effectiveness of Cell-Cultured and Egg-Based Influenza Vaccines among Elderly Persons in the United States, 2017-2018. Journal of Infectious Diseases. 2019;220(8):1255-64.
- 81. Puig-Barberà J, Natividad-Sancho A, Calabuig-Pérez J, Lluch-Rodrigo JA, Pastor-Villalba E, Martínez-Úbeda S, et al. MF59-adjuvanted and virosomal influenza vaccines for preventing influenza hospitalization in older people: Comparative effectiveness using the Valencia health care information system. Vaccine. 2013;31(37):3995-4002.

- 82. Mannino S, Villa M, Apolone G, Weiss NS, Groth N, Aquino I, et al. Effectiveness of adjuvanted influenza vaccination in elderly subjects in northern Italy. American Journal of Epidemiology. 2012;176(6):527-33.
- 83. Spadea A, Unim B, Colamesta V, Meneghini A, D'Amici AM, Giudiceandrea B, et al. Is the adjuvanted influenza vaccine more effective than the trivalent inactivated vaccine in the elderly population? Results of a case-control study. Vaccine. 2014;32(41):5290-4.
- 84. Iob A, Brianti G, Zamparo E, Gallo T. Evidence of increased clinical protection of an MF59-adjuvant influenza vaccine compared to a non-adjuvant vaccine among elderly residents of long-term care facilities in Italy. Epidemiology and Infection. 2005;133(4):687-93.
- 85. Frey SE, Aplasca De Los Reyes MR, Reynales H, Bermal NN, Nicolay U, Narasimhan V, et al. Comparison of the safety and immunogenicity of an MF59®-adjuvanted with a non-adjuvanted seasonal influenza vaccine in elderly subjects. Vaccine. 2014;32(39):5027-34.
- 86. Van Damme P, Arnou R, Kafeja F, Fiquet A, Richard P, Thomas S, et al. Evaluation of non-inferiority of intradermal versus adjuvanted seasonal influenza vaccine using two serological techniques: A randomised comparative study. BMC Infectious Diseases. 2010:10.
- 87. Tsai TF, Crucitti A, Nacci P, Nicolay U, Cioppa GD, Ferguson J, et al. Explorations of clinical trials and pharmacovigilance databases of MF59 ®-adjuvanted influenza vaccines for associated cases of narcolepsy. Scandinavian Journal of Infectious Diseases. 2011;43(9):702-6.
- 88. Villa M, Black S, Groth N, Rothman KJ, Apolone G, Weiss NS, et al. Safety of MF59-adjuvanted influenza vaccination in the elderly: Results of a comparative study of mf59-adjuvanted vaccine versus nonadjuvanted influenza vaccine in Northern Italy. American Journal of Epidemiology. 2013;178(7):1139-45.
- 89. Richardson DM, Medvedeva EL, Roberts CB, Linkin DR. Comparative Effectiveness of High-Dose Versus Standard-Dose Influenza Vaccination in Community-Dwelling Veterans. Clinical Infectious Diseases. 2015;61(2):171-6.
- Young-Xu Y, Van Aalst R, Mahmud SM, Rothman KJ, Snider JT, Westreich D, et al. Relative vaccine effectiveness of highdose versus standard-dose influenza vaccines among veterans health administration patients. Journal of Infectious Diseases. 2018;217(11):1718-27.
- 91. Butler AM, Layton JB, Dharnidharka VR, Sahrmann JM, Weber DJ, McGrath LJ. Comparative effectiveness of high dose versus standard-dose influenza vaccine among patients on chronic hemodialysis. Pharmacoepidemiol Drug Saf. 2019;28.
- 92. Chang LJ, Meng Y, Janosczyk H, Landolfi V, Talbot HK (for the QHDSG). Safety and immunogenicity of high-dose quadrivalent influenza vaccine in adults ≥65 years of age: A phase 3 randomized clinical trial. Vaccine. 2019;37(39):5825-34.
- 93. Arya DP, Said MA, Izurieta HS, Perez-Vilar S, Zinderman C, Wernecke M, et al. Surveillance for Guillain-Barré syndrome after 2015–2016 and 2016–2017 influenza vaccination of Medicare beneficiaries. Vaccine. 2019;37(43):6543-9.
- 94. Treanor JJ, Sahly HE, King J, Graham I, Izikson R, Kohberger R, et al. Protective efficacy of a trivalent recombinant hemagglutinin protein vaccine (FluBlok ®) against influenza in healthy adults: A randomized, placebo-controlled trial. Vaccine. 2011;29(44):7733-9.
- 95. Remschmidt C, Wichmann O, Harder T. Frequency and impact of confounding by indication and healthy vaccinee bias in observational studies assessing influenza vaccine effectiveness: a systematic review. BMC Infectious Diseases. 2015;15(1):429.
- 96. Gasparini R, Amicizia D, Lai PL, Rossi S, Panatto D. Effectiveness of adjuvanted seasonal influenza vaccines (Inflexal V® and Fluad®) in preventing hospitalization for influenza and pneumonia in the elderly: A matched case-control study. Human Vaccines and Immunotherapeutics. 2013;9(1):144-52.
- 97. Puig-Barberà J, Diez-Domingo J, Pérez Hoyos S, Belenguer Varea A, González Vidal D. Effectiveness of the MF59-adjuvanted influenza vaccine in preventing emergency admissions for pneumonia in the elderly over 64 years of age. Vaccine. 2004;23(3):283-9.
- 98. Gravenstein S, Davidson HE, Taljaard M, Ogarek J, Gozalo P, Han L, et al. Comparative effectiveness of high-dose versus standard-dose influenza vaccination on numbers of US nursing home residents admitted to hospital: a cluster-randomised trial. The Lancet Respiratory Medicine. 2017;5(9):738-46.
- 99. Lu Y, Chillarige Y, Izurieta H. Effect of age on relative effectiveness of high-dose versus standard-dose influenza vaccines among US Medicare beneficiaries ages 65 years and older. Pharmacoepidemiol Drug Saf. 2019;28:239-40.
- 100. Shay DK, Chillarige Y, Kelman J, Forshee RA, Foppa IM, Wernecke M, et al. Comparative effectiveness of high-dose versus standard-dose influenza vaccines among US medicare beneficiaries in preventing postinfluenza deaths during 2012–2013 and 2013-2014. Journal of Infectious Diseases. 2017;215(4):510-7.
- 101. Young-Xu Y, Snider JT, van Aalst R, Mahmud SM, Thommes EW, Lee JKH, et al. Analysis of relative effectiveness of high-dose versus standard-dose influenza vaccines using an instrumental variable method. Vaccine. 2019;37(11):1484-90.
- 102. Hsiao A, Yee A, Fireman B, Hansen J, Lewis N, Klein NP. Recombinant or Standard-Dose Influenza Vaccine in Adults under 65 Years of Age. New England Journal of Medicine. 2023;389(24):2245-55.
- 103. Coleman BL, Sanderson R, Haag MDM, McGovern I. Effectiveness of the MF59-adjuvanted trivalent or quadrivalent seasonal influenza vaccine among adults 65 years of age or older, a systematic review and meta-analysis. Influenza and Other Respiratory Viruses. 2021;15(6):813-23.

Annex 1. Search strategies

Medline (Ovid)

Date run: 24.07.2023

#	Searches	Results
1	Influenza, Human/	57851
2	Influenza A virus/ or exp Influenza B virus/	25030
3	influenza.ti.	79308
4	1 or 2 or 3	97222
5	vaccines/ or vaccines, attenuated/ or vaccines, inactivated/ or vaccines, subunit/ or vaccines, synthetic/ or nucleic acid-based vaccines/ or mrna vaccines/ or vaccines, conjugate/ or vaccines, virosome/ or vaccines, virus-like particle/ or vaccines, live, unattenuated/ or viral vaccines/ or influenza vaccines/	112523
6	exp Vaccination/ or Immunization/ or Immunotherapy, Active/	160514
7	[vaccin* or immuni* or inocul*].ti,ab,kf.	834488
8	5 or 6 or 7	870327
9	4 and 8	39133
10	influenza vaccines/	26853
11	[[vaccin* or immuni* or inocul*] adj4 influenza].ti,ab,kf.	29925
12	9 or 10 or 11	46127
13	[[trivalent or quadrivalent or tetravalent or tetra*] adj8 vaccin*].ti,ab,kf.	6642
14	[[[high adj2 dose*] or highdose] adj8 vaccin*].ti,ab,kf.	1079
15	[TIV or QIV].ti,ab,kf.	1075
16	[cell adj3 vaccin*].ti,ab,kf.	11331
17	[[adjuvant* or squalene* or emulsion*] adj8 vaccin*].ti,ab,kf.	16599
18	[recombinant adj6 vaccin*].ti,ab,kf.	15694
19	[MF59* or "MF-59"].ti,ab,kf.	732
20	Nucleic Acid-Based Vaccines/ or mRNA Vaccines/	1137
21	[[gene or genetic or nucleic acid or RNA or mRNA] adj3 vaccin*].ti,ab,kf.	13577
22	13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21	59710
23	12 and 22	6639
24	[fluad or fluzone or flucelvax or flublok or supemtek or optaflu].ti,ab,kf,nm.	271
25	[[cell-based or cell-derived or cellular or "whole cell" or "whole cells"] adj3 vaccin* adj6 influenza].ti,ab,kf.	125
26	[aIIV3 or "aIIV4 HD-IIV3" or "HD-IIV4" or ccIIV3 or ccIIV4 or RIV3 or RIV4 or aQIV].ti,ab,kf.	80
27	23 or 24 or 25 or 26	6732
28	limit 27 to yr="2020 -Current"	1408
29	animals/ not humans/	5107621
30	[rat or rats or mouse or mice or swine or porcine or murine or sheep or lambs or pigs or piglets or rabbit or rabbits or cat or cats or dog or dogs or cattle or bovine or monkey or monkeys or trout or marmoset* or equine or uquines or "ex vivo" or "in vitro"].ti. and [Animal Experimentation/ or models, biological/ or disease models, animal/ or exp In Vitro Techniques/ or cytological techniques/ or exp cell culture techniques/]	402856
31	29 or 30	5213363
32	28 not 31	1229
33	[randomized controlled trial or controlled clinical trial].pt.	687755
34	[randomized or randomised or placebo or randomly or trial or groups].ab.	3535662
35	33 or 34	3676435
36	32 and 35	384
37	exp cohort studies/ or exp epidemiologic studies/ or exp clinical trial/ or exp evaluation studies as topic/ or exp statistics as	6599991

38	[[control and [group* or study]] or [time and factors] or program or survey* or ci or cohort or comparative stud* or evaluation studies or follow-up*].mp.	8617974
39	37 or 38	11344166
40	32 and 39	617
41	[case adj2 control].ti,ab,kf.	160691
42	[[test-negative or test-negativity] adj6 [study or studies or design*]].ti,ab,kf.	755
43	41 or 42	161027
44	32 and 43	40
45	36 or 40 or 44	719
46	comment.pt.	1014506
47	editorial.pt.	658111
48	case reports.pt.	2347767
49	[case adj [study or studies or series or report or reports]].ti.	415260
50	46 or 47 or 48 or 49	3912415
51	45 not 50	709
52	[["COVID-19" or "SARS-CoV-2" or "Coronavirus Disease 2019"] not "influenza"].ti.	292163
53	exp covid-19/ or SARS-CoV-2/	239107
54	52 or 53	339554
55	51 not 54	605

Embase (via Ovid)

Date run: 24.07.2023

#	Searches	Results
1	exp influenza/	116528
2	influenza.ti.	92329
3	exp Influenza virus A/ or influenza virus B/	25654
4	1 or 2 or 3	154279
5	vaccine/	85225
6	conjugate vaccine/ or inactivated vaccine/ or live vaccine/ or nucleic acid vaccine/ or recombinant vaccine/ or subunit vaccine/ or virosome vaccine/ or virus like particle vaccine/ or virus vaccine/	54768
7	immunization/ or vaccination/ or active immunization/ or immunoprophylaxis/ or mass immunization/	347400
8	[vaccin* or immuni* or inocul*].ti,ab,kf.	1051488
9	5 or 6 or 7 or 8	1125136
10	4 and 9	58931
11	[[vaccin* or immuni* or inocul*] adj4 influenza].ti,ab,kf.	38268
12	influenza vaccine/	46635
13	11 or 12	58440
14	10 or 13	76555
15	[[trivalent or quadrivalent or tetravalent or tetra*] adj8 vaccin*].ti,ab,kf.	8775
16	[[[high adj2 dose*] or highdose] adj8 vaccin*].ti,ab,kf.	1408
17	[TIV or QIV].ti,ab,kf.	1556
18	[[cell-based or cell-derived or cellular or "whole cell" or "whole cells"] adj3 vaccin* adj6 influenza].ti,ab,kf.	161
19	[cell adj3 vaccin*].ti,ab,kf.	14947
20	cell-based vaccine/	353
21	[[adjuvant* or squalene* or emulsion*] adj8 vaccin*].ti,ab,kf.	20599
22	[recombinant adj6 vaccin*].ti,ab,kf.	18356
23	recombinant vaccine/	8001

24	[aIIV3 or "aIIV4 HD-IIV3" or "HD-IIV4" or ccIIV3 or ccIIV4 or RIV3 or RIV4 or aQIV].ti,ab,kf.	89
25	[MF59 or "MF-59"].ti,ab,kf.	885
26	exp rna vaccine/ or nucleic acid vaccine/	16297
27	[[gene or genetic or nucleic acid or RNA or mRNA] adj3 vaccin*].ti,ab,kf.	16815
28	15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27	86613
29	14 and 28	10275
30	[fluad or fluzone or flucelvax or flublok or supemtek or optaflu].ti,ab,kf.	338
31	[aIIV3 or "aIIV4 HD-IIV3" or "HD-IIV4" or ccIIV3 or ccIIV4 or RIV3 or RIV4 or aQIV].ti,ab,kf.	89
32	[[cell-based or cell-derived or cellular or "whole cell" or "whole cells"] adj3 vaccin* adj6 influenza].ti,ab,kf.	161
33	30 or 31 or 32	543
34	29 or 33	10369
35	limit 34 to yr="2020 -Current"	2620
36	[rat or rats or mouse or mice or swine or porcine or murine or sheep or lambs or pigs or piglets or rabbit or rabbits or cat or cats or dog or dogs or cattle or bovine or monkey or monkeys or trout or marmoset* or equine].ti. and [exp animal experiment/ or exp in vitro study/ or exp biological model/]	1749669
37	animal experiment/ not [human experiment/de or human/]	2550346
38	exp in vitro study/ not exp in vivo study/	3539450
39	exp veterinary study/ not [human experiment/de or human/]	84
40	36 or 37 or 38 or 39	6226442
41	35 not 40	2102
42	randomized controlled trial/	777203
43	controlled clinical trial/	470881
44	random*.ti,ab.	1965836
45	randomization/	98226
46	intermethod comparison/	298666
47	placebo*.ti,ab.	370124
48	[compare or comparison].ti.	631873
49	[[evaluated or evaluate or evaluating or assessed or assess] and [compare or comparing or comparison]].ab.	2753018
50	[open adj1 label].ti,ab.	107633
51	[[double or single or doubly or singly] adj1 [blind or blinded or blindly]].ti,ab.	277996
	<u> </u>	
52	double blind procedure/	211385
53	[parallel adj1 group*].ti,ab.	32449
54	[crossover or "cross over"].ti,ab.	125039
55	[[assign* or match or matched or allocation] adj6 [alternate or group or groups or intervention or interventions or patient or patients or subject or subjects or participant or participants]].ti,ab.	457167
56	[assigned or allocated].ti,ab.	488550
57	[controlled adj8 [study or design or trial]].ti,ab.	456608
58	[volunteer or volunteers].ti,ab.	287193
59	human experiment/	634989
60	trial.ti.	404863
61	42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60	6360891
62	exp cohort analysis/	1023923
63	exp comparative study/	1705484
64	controlled study/ or exp case control study/ or exp controlled clinical trial/	9942972
65	clinical study/ or exp case control study/ or exp clinical trial/ or exp community trial/ or exp intervention study/ or exp major clinical study/ or exp postmarketing surveillance/ or exp prospective study/ or exp retrospective study/	7381597
66	[[control or controlled or compare* or compara*] adj8 [group or groups or population or populations or intervention or interventions or patient or patients or subject or subjects or participant or participants or program* or vaccin*]].ti,ab,kf.	3487545
67	[control or controlled or compare* or compara*].ti,ab,kf. and [epidemiology/ or observational study/]	220940

68	[[control or controlled or compare* or compara* or evaluat*] adj8 stud*].ti,ab,kf.	2821254
69	follow up/ or follow-up.ti,ab,kf.	2578286
70	cohort.ti,ab,kf.	1330861
71	[case adj2 control].ti,ab,kf.	214060
72	[[test-negative or test negativity] adj4 [study or studies or design*]].ti,ab,kf.	866
73	62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72	17357049
74	61 or 73	18738508
75	41 and 74	1315
76	comment/ or editorial/	742623
77	limit 75 to [editorial or erratum or letter or note]	39
78	exp case study/	104758
79	[case adj [study or studies or series or report or reports]].ti.	534084
80	76 or 77 or 78 or 79	1346968
81	75 not 80	1256
82	[["COVID-19" or "SARS-CoV-2" or "Coronavirus Disease 2019"] not "influenza"].ti.	316922
83	[exp Severe acute respiratory syndrome coronavirus 2/ or exp coronavirus disease 2019/] not [exp influenza/ or exp Influenza virus A/ or influenza virus B/]	347784
84	82 or 83	402127
85	81 not 84	956

Annex 2. Publications excluded by full text

Wrong outcomes (n= 51)

- 1. Belongia EA, Levine MZ, Olaiya O, Gross FL, King JP, Flannery B, McLean HQ. Clinical trial to assess immunogenicity of high-dose, adjuvanted, and recombinant influenza vaccines against cell-grown A(H3N2) viruses in adults 65 to 74 years, 2017-2018. Vaccine. 2020;38(15):3121-8.
- 2. Boikos C, Fischer L, O'Brien D, Vasey J, Sylvester GC, Mansi JA. Relative Effectiveness of the Cell-derived Inactivated Quadrivalent Influenza Vaccine Versus Egg-derived Inactivated Quadrivalent Influenza Vaccines in Preventing Influenza-related Medical Encounters during the 2018-2019 Influenza Season in the United Sta. Clinical Infectious Diseases. 2021;73(3):E692-E8.
- 3. Boikos C, Fischer L, O'Brien D, Vasey J, Sylvester GC, Mansi JA. Relative Effectiveness of Adjuvanted Trivalent Inactivated Influenza Vaccine Versus Egg-derived Quadrivalent Inactivated Influenza Vaccines and High-dose Trivalent Influenza Vaccine in Preventing Influenza-related Medical Encounters in US Adults >= 65 Yea. Clinical Infectious Diseases. 2021;73(5):816-23.
- 4. Boikos C, Imran M, Nguyen VH, Ducruet T, Sylvester GC, Mansi JA. Effectiveness of the adjuvanted influenza vaccine in older adults at high risk of influenza complications. Vaccines. 2021;9(8):862.
- 5. Boikos C, Imran M, Nguyen VH, Ducruet T, Sylvester GC, Mansi JA. Effectiveness of the Cell-Derived Inactivated Quadrivalent Influenza Vaccine in Individuals at High Risk of Influenza Complications in the 2018-2019 United States Influenza Season. Open Forum Infectious Diseases. 2021;8(7):ofab167.
- 6. Boikos C, McGovern I, Ortiz JR, Puig-Barbera J, Versage E, Haag M. Relative Vaccine Effectiveness of Adjuvanted Trivalent Influenza Vaccine over Three Consecutive Influenza Seasons in the United States. Vaccines. 2022;10(9):1456.
- 7. Boikos C, Sylvester GC, Sampalis JS, Mansi JA. Relative effectiveness of the cell-cultured quadrivalent influenza vaccine compared to standard, egg-derived quadrivalent influenza vaccines in preventing influenza-like illness in 2017-2018. Clinical Infectious Diseases. 2020;71(10):E665-E71.
- 8. Butler AM, Layton JB, Dharnidharka VR, Sahrmann JM, Seamans MJ, Weber DJ, McGrath LJ. Comparative Effectiveness of High-Dose Versus Standard-Dose Influenza Vaccine Among Patients Receiving Maintenance Hemodialysis. American Journal of Kidney Diseases. 2020;75(1):72-83.
- 9. Chaves SS, Naeger S, Lounaci K, Zuo Y, Loiacono MM, Pilard Q, et al. High-dose influenza vaccine is associated with reduced mortality among older adults with breakthrough influenza even when there is poor vaccine-strain match. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2023 ((Chaves, Naeger, Mahe) Sanofi Vaccines, Lyon, France (Lounaci, Zuo, Pilard, Genin) Quinten Health, Lyon, France (Loiacono) Sanofi Vaccines, PA, United States (Nealon) School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kon).
- 10. Cocchio S, Gallo T, Zotto SD, Clagnan E, Iob A, Furlan P, et al. Preventing the risk of hospitalization for respiratory complications of influenza among the elderly: Is there a better influenza vaccination strategy? a retrospective population study. Vaccines. 2020;8(3):1-11.
- 11. Davidson H, Han L, McConeghy K, Saade E, Canaday D, Mor V, Gravenstein S. Can adjuvanted influenza vaccine given as standard of care reduce the risk for influenza outbreaks in nursing homes? evidence from a cluster-randomized trial of 823 nursing homes. Journal of the American Geriatrics Society. 2020;68(SUPPL 1):S217.
- 12. Dawood FS, Naleway AL, Flannery B, Levine MZ, Murthy K, Sambhara S, et al. Comparison of the Immunogenicity of Cell Culture-Based and Recombinant Quadrivalent Influenza Vaccines to Conventional Egg-Based Quadrivalent Influenza Vaccines Among Healthcare Personnel Aged 18-64 Years: A Randomized Open-Label Trial. Clinical Infectious Diseases. 2021;73(11):1973-81.
- 13. Divino V, Krishnarajah G, Pelton SI, Mould-Quevedo J, Anupindi VR, DeKoven M, Postma MJ. A real-world study evaluating the relative vaccine effectiveness of a cell-based quadrivalent influenza vaccine compared to egg-based quadrivalent influenza vaccine in the US during the 2017-18 influenza season. Vaccine. 2020;38(40):6334-43.
- 14. Divino V, Postma M, Pelton SI, Mould-Quevedo JF, Anupindi R, DeKoven M, Levin MJ. Relative Vaccine Effectiveness Against Influenza-Related and Any Respiratory-Related Hospital Encounter during the 2019/20 High Influenza Activity Period: A Comprehensive Real-World Analysis to Compare Quadrivalent Cell-based and Egg-based Influenza Vacci. Open Forum Infectious Diseases. 2021;8(SUPPL 1):S61.
- 15. Divino V, Ruthwik Anupindi V, Dekoven M, Mould-Quevedo J, Pelton SI, Postma MJ, Levin MJ. A Real-World Clinical and Economic Analysis of Cell-Derived Quadrivalent Influenza Vaccine Compared to Standard Egg-Derived Quadrivalent Influenza Vaccines during the 2019-2020 Influenza Season in the United States. Open Forum Infectious Diseases. 2022;9(1):ofab604.
- 16. Gravenstein S, McConeghy K, Davidson H, Han L, Canaday D, Saade E, Mor V. Secondary analysis comparative effectiveness of adjuvanted vs non-adjuvanted influenza vaccine on reducing hospital days in a long-term care population. Journal of the American Geriatrics Society. 2020;68(SUPPL 1):S218.

- 17. Gravenstein S, McConeghy KW, Saade E, Davidson HE, Canaday DH, Han L, et al. Adjuvanted Influenza Vaccine and Influenza Outbreaks in US Nursing Homes: Results From a Pragmatic Cluster-Randomized Clinical Trial. Clinical Infectious Diseases. 2021;73(11):E4229-E36.
- 18. Helene B, Marie-Cecile L, Nada A, Pascal C, Alexandre D, Karine M, et al. The relative effectiveness of a high-dose quadrivalent influenza vaccine vs standard-dose quadrivalent influenza vaccines in older adults in France: a retrospective cohort study during the 2021-22 influenza season. medRxiv. 2023.
- 19. Imran M, Ortiz JR, McLean HQ, Fisher L, O'Brien D, Bonafede M, et al. Relative Effectiveness of Cell-Based Versus Egg-Based Quadrivalent Influenza Vaccines in Adults During the 2019-2020 Influenza Season in the United States. Open Forum Infectious Diseases. 2022;9(10):ofac532.
- 20. Imran M, Puig-Barbera J, Ortiz JR, Fischer L, O'Brien D, Bonafede M, et al. Relative Effectiveness of MF59 Adjuvanted Trivalent Influenza Vaccine vs Nonadjuvanted Vaccines during the 2019-2020 Influenza Season. Open Forum Infectious Diseases. 2022;9(5):ofac167.
- 21. Izurieta HS, Chillarige Y, Kelman J, Wei Y, Lu Y, Xu W, et al. Relative Effectiveness of Influenza Vaccines among the United States Elderly, 2018-2019. Journal of Infectious Diseases. 2020;222(2):278-87.
- 22. Izurieta HS, Lu M, Kelman J, Lu Y, Lindaas A, Loc J, et al. Comparative Effectiveness of Influenza Vaccines Among US Medicare Beneficiaries Ages 65 Years and Older During the 2019-2020 Season. Clinical Infectious Diseases. 2021;73(11):E4251-E9.
- 23. Krishnarajah G, Divino V, Postma MJ, Pelton SI, Anupindi VR, Dekoven M, Mould-Quevedo J. Clinical and economic outcomes associated with cell-based quadrivalent influenza vaccine vs. Standard-dose egg-based quadrivalent influenza vaccines during the 2018-19 influenza season in the United States. Vaccines. 2021;9(2):1-17.
- 24. Lapi F, Domnich A, Marconi E, Rossi A, Cricelli C. Adjuvanted versus non-adjuvanted standard-dose influenza vaccines in preventing all-cause hospitalizations in the elderly: a cohort study with nested case-control analyses over 18 influenza seasons. Expert Review of Vaccines. 2022;21(11):1647-53.
- 25. Lee H, Hong B, Kim S, Kim JH, Choi NK, Jung SY, Shin JY. Post-marketing surveillance study on influenza vaccine in South Korea using a nationwide spontaneous reporting database with multiple data mining methods. Scientific reports. 2022;12(1):20256.
- 26. Levin MJ, Divino V, Pelton SI, Postma M, Shah D, Mould-Quevedo JF, DeKoven M. Relative Effectiveness of Adjuvanted Trivalent Influenza Vaccine Compared to Egg-Based Trivalent High-Dose Influenza Vaccine among U.S. Older Adults during 2019-20 Influenza Season. Open Forum Infectious Diseases. 2021;8(SUPPL 1):S136.
- 27. Levin MJ, Divino V, Shah D, Dekoven M, Mould-Quevedo J, Pelton SI, Postma MJ. Comparing the clinical and economic outcomes associated with adjuvanted versus high-dose trivalent influenza vaccine among adults aged >= 65 years in the us during the 2019-20 influenza season-a retrospective cohort analysis. Vaccines. 2021;9(10):1146.
- 28. Liberg R, Schofield C, Richard SA, Collins L, Spooner C, Seshadri S, et al. Impact of COVID-19 Pandemic on Influenza-like Illness (ILI) Experience among Healthcare Workers in Military Treatment Facilities. Open Forum Infectious Diseases. 2022;9(Supplement 2):S895.
- 29. Loeb N, Andrew MK, Loeb M, Kuchel GA, Haynes L, McElhaney JE, Verschoor CP. Frailty is associated with increased hemagglutination- inhibition titers in a 4-year randomized trial comparing standard- And high-dose influenza vaccination. Open Forum Infectious Diseases. 2020;7(5):ofaa148.
- 30. MacHado MA, Moura CS, Abrahamowicz M, Ward BJ, Pilote L, Bernatsky S. Better outcomes with high-dose trivalent influenza vaccine in seniors. Pharmacoepidemiology and Drug Safety. 2021;30(SUPPL 1):88-9.
- 31. Machado MAA, Moura CS, Abrahamowicz M, Ward BJ, Pilote L, Bernatsky S. Relative effectiveness of influenza vaccines in elderly persons in the United States, 2012/2013-2017/2018 seasons. npj Vaccines. 2021;6(1):108.
- 32. McConeghy KW, Davidson HE, Canaday DH, Han L, Saade E, Mor V, Gravenstein S. Cluster-randomized Trial of Adjuvanted Versus Nonadjuvanted Trivalent Influenza Vaccine in 823 US Nursing Homes. Clinical Infectious Diseases. 2021;73(11):E4237-E43.
- 33. McElhaney JE, Verschoor CP, Haynes L, Pawelec G, Loeb M, Andrew MK, Kuchel GA. Key Determinants of Cell-Mediated Immune Responses: A Randomized Trial of High Dose Vs. Standard Dose Split-Virus Influenza Vaccine in Older Adults. Frontiers in aging. 2021;2(9918231199706676).
- 34. McLean HQ, Levine MZ, King JP, Flannery B, Belongia EA. Serologic response to sequential vaccination with enhanced influenza vaccines: Open label randomized trial among adults aged 65-74 years. Vaccine. 2021;39(49):7146-52.
- 35. Naleway AL, Kim SS, Flannery B, Levine MZ, Murthy K, Sambhara S, et al. Immunogenicity of High-Dose Egg-Based, Recombinant, and Cell Culture-Based Influenza Vaccines Compared With Standard-Dose Egg-Based Influenza Vaccine Among Health Care Personnel Aged 18-65 Years in 2019-2020. Open Forum Infectious Diseases. 2023;10(6):ofad223.
- 36. Paudel M, Mahmud S, Buikema A, Korrer S, Van Voorhis D, Brekke L, Chit A. Relative vaccine efficacy of high-dose versus standard-dose influenza vaccines in preventing probable influenza in a Medicare Fee-for-Service population. Vaccine. 2020;38(29):4548-56.
- 37. Pelton S, Postma M, Divino V, Mould J, Dekoven M, Krishnarajah G. Relative vaccine effectiveness of adjuvanted trivalent influenza vaccine compared to egg-based trivalent high dose and other egg-based vaccines. International Journal of Infectious Diseases. 2020;101(Supplement 1):465.

- 38. Pelton S, Postma M, Divino V, Mould-Quevedo JF, DeKoven M, Krishnarajah G. Pin3 Relative Vaccine Effectiveness of Quadrivalent Cell-Based versus Egg-Based Influenza Vaccines Among Adults 50–64 Years Old: A US Observational Cohort Study. Value in Health. 2020;23(Supplement 1):S168.
- 39. Pelton SI, Divino V, Postma MJ, Shah D, Mould-Quevedo J, DeKoven M, Krishnarajah G. A retrospective cohort study assessing relative effectiveness of adjuvanted versus high-dose trivalent influenza vaccines among older adults in the United States during the 2018-19 influenza season. Vaccine. 2021;39(17):2396-407.
- 40. Pelton SI, Divino V, Shah D, Mould-Quevedo J, Dekoven M, Krishnarajah G, Postma MJ. Evaluating the relative vaccine effectiveness of adjuvanted trivalent influenza vaccine compared to high-dose trivalent and other eggbased influenza vaccines among older adults in the us during the 2017-2018 influenza season. Vaccines. 2020;8(3):1-17.
- 41. Pelton SI, Postma M, Divino V, Mould-Quevedo JF, Anupindi R, DeKoven M, Levin MJ. Relative Vaccine Effectiveness Against Influenza-related Hospitalizations and Respiratory Events during the 2019/20 Influenza season in U.S. Children and Adults. A Real-World Evidence Comparison between Quadrivalent Cell-based and Egg-based Influenza Vacc. Open Forum Infectious Diseases. 2021;8(SUPPL 1):S758.
- 42. Pelton SI, Postma M, Divino V, Shah D, Mould-Quevedo JF, DeKoven M, Krishnarajah G. Mf59 assurance 2: A real-world study to estimate the relative vaccine effectiveness of adjuvanted trivalent influenza vaccine compared to egg-based trivalent high-dose among US older adults during 2018–19 influenza season. Open Forum Infectious Diseases. 2020;7(SUPPL 1):S3.
- 43. Postma M, Pelton SI, Divino V, Mould-Quevedo JF, Shah D, DeKoven M. A comprehensive real-world analysis to compare adjuvanted trivalent influenza vaccine and trivalent high dose influenza vaccine by age and period of high influenza activity for the 2018-19 season among u.s. elderly. Open Forum Infectious Diseases. 2020;7(SUPPL 1):S29-S30.
- 44. Richard SA, Schofield C, Collins L, Spooner C, Seshadri S, Ganesan A, et al. Pathogen Co-infections and Trends in Influenza-like Illness in PAIVED. Open Forum Infectious Diseases. 2022;9(Supplement 2):S897.
- 45. Saade E, Davidson H, McConeghy K, Han L, Mor V, Canaday D, Gravenstein S. Effectiveness of adjuvanted vs non-adjuvanted influenza vaccination in U.S. Nursing homes. Journal of the American Geriatrics Society. 2020;68(SUPPL 1):S57.
- 46. Saade EA, Abul Y, McConeghy K, Edward Davidson H, Han L, Joyce N, et al. High-dose influenza vaccines for the prevention of hospitalization due to cardiovascular events in older adults in the nursing home: Post-hoc analysis of a cluster-randomized trial. Vaccine. 2022;40(47):6700-5.
- 47. Sanchez-de Prada L, Sanz-Munoz I, de Lejarazu RO, Eiros JM, Garcia-Sastre A, Aydillo T. Immunodominance hierarchy after seasonal influenza vaccination. Emerging Microbes and Infections. 2022;11(1):2670-9.
- 48. Smith CL, Bednarchik B, Aung H, Wilk DJ, Boxer RS, Daddato AE, et al. Humoral and Cellular Immunity Induced by Adjuvanted and Standard Trivalent Influenza Vaccine in Older Nursing Home Residents. The Journal of Infectious Diseases. 2023 ((Smith) Department of Pathology, Case Western Reserve University School of Medicine, Cleveland 44106, United States (Bednarchik) Department of Medicine, University Hospitals Case Medical Center, Cleveland 44106, United States (Aung, Wilk) Case Western Reser).
- 49. Van Aalst R, Gravenstein S, Mor V, Mahmud SM, Wilschut J, Postma M, Chit A. Comparative effectiveness of high dose versus adjuvanted influenza vaccine: A retrospective cohort study. Vaccine. 2020;38(2):372-9.
- 50. Vardeny O, Kim K, Udell JA, Joseph J, Desai AS, Farkouh ME, et al. Effect of High-Dose Trivalent vs Standard-Dose Quadrivalent Influenza Vaccine on Mortality or Cardiopulmonary Hospitalization in Patients with High-risk Cardiovascular Disease: A Randomized Clinical Trial. JAMA Journal of the American Medical Association. 2021;325(1):39-49.
- 51. Young-Xu Y, Snider JT, Mahmud SM, Russo EM, van Aalst R, Thommes EW, et al. High-dose influenza vaccination and mortality among predominantly male, white, senior veterans, United States, 2012/13 to 2014/15. Eurosurveillance. 2020;25(19).

Wrong intervention (n=28)

- Basu I, Supe PD, Agarwal M. Comparison of Immunogenicity and Safety between Two Quadrivalent Influenza Vaccines in Healthy Indian Adults (18-60 Years) and Elderly (+61 Years) - A Phase III, Active-Controlled, Randomized Clinical Study. The Journal of the Association of Physicians of India. 2020;68(1):105.
- 2. Branagan AR, Duffy E, Gan G, Li F, Foster C, Verma R, et al. Tandem high-dose influenza vaccination is associated with more durable serologic immunity in patients with plasma cell dyscrasias. Blood Advances. 2021;5(5):1535-9.
- Cross JW, Joy M, McGee C, Akinyemi O, Gatenby P, de Lusignan S. Adverse events of interest vary by influenza vaccine type and brand: Sentinel network study of eight seasons (2010–2018). Vaccine. 2020;38(22):3869-80.
- 4. Drori Y, Pando R, Sefty H, Rosenberg A, Mendelson E, Keinan-Boker L, et al. Influenza vaccine effectiveness against laboratory-confirmed influenza in a vaccine-mismatched influenza B-dominant season. Vaccine. 2020;38(52):8387-95.

- El Sahly HM, Yildirim I, Frey SE, Winokur P, Jackson LA, Bernstein DI, et al. Safety and Immunogenicity of a Delayed Heterologous Avian Influenza A(H7N9) Vaccine Boost Following Different Priming Regimens: A Randomized Clinical Trial. The Journal of infectious diseases. 2023(ih3, 0413675).
- 6. Endo M, Tanishima M, Ibaragi K, Hayashida K, Fukuda T, Tanabe T, et al. Clinical phase II and III studies of an AS03-adjuvanted H5N1 influenza vaccine produced in an EB66 R cell culture platform. Influenza and other respiratory viruses. 2020;14(5):551-63.
- 7. Fadlyana E, Dhamayanti M, Tarigan R, Prodjosoewojo S, Rahmadi AR, Sari RM, et al. Immunogenicity and safety of Quadrivalent Influenza HA vaccine compared with Trivalent Influenza HA vaccine and evaluation of Quadrivalent Influenza HA vaccine batch-to-batch consistency in Indonesian children and adults. medRxiv. 2023((Fadlyana, Dhamayanti, Tarigan, Rusmil, Kartasasmita) Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia(Prodjosoewojo, Rahmadi) Department of Internal Medicine, Faculty of Medicine, Univer).
- 8. Folschweiller N, Vanden Abeele C, Chu L, Van Damme P, Garcia-Sastre A, Krammer F, et al. Reactogenicity, safety, and immunogenicity of chimeric haemagglutinin influenza split-virion vaccines, adjuvanted with AS01 or AS03 or non-adjuvanted: a phase 1-2 randomised controlled trial. The Lancet Infectious Diseases. 2022;22(7):1062-75.
- 9. Fonseca HAR, Furtado RHM, Zimerman A, Lemos PA, Franken M, Monfardini F, et al. Influenza vaccination strategy in acute coronary syndromes: the VIP-ACS trial. European Heart Journal. 2022;43(41):4378-88.
- 10. Gaglani M, Vasudevan A, Raiyani C, Murthy K, Chen W, Reis M, et al. Effectiveness of Trivalent and Quadrivalent Inactivated Vaccines against Influenza B in the United States, 2011-2012 to 2016-2017. Clinical Infectious Diseases. 2021;72(7):1147-57.
- 11. Gorse GJ, Grimes S, Buck H, Mulla H, White P, Hill H, et al. A phase 1 dose-sparing, randomized clinical trial of seasonal trivalent inactivated influenza vaccine combined with MAS-1, a novel water-in-oil adjuvant/delivery system. Vaccine. 2022;40(9):1271-81.
- 12. Gorse GJ, Grimes S, Buck H, Mulla H, White P, Hill H, et al. MAS-1, a novel water-in-oil adjuvant/delivery system, with reduced seasonal influenza vaccine hemagglutinin dose may enhance potency, durability and cross-reactivity of antibody responses in the elderly. Vaccine. 2022;40(10):1472-82.
- 13. Hsu PS, Lian IB, Chao DY. A population-based propensity score-matched study to assess the impact of repeated vaccination on vaccine effectiveness for influenza-associated hospitalization among the elderly. Clinical Interventions in Aging. 2020;15((Hsu) Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan (Republic of China)(Hsu, Chao) Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University):301-12.
- 14. Kumabe A, Kenzaka T, Yahata S, Goda K, Okayama M. Evaluation of Adverse Reactions to Influenza Vaccination: A Prospective Cohort Study. Vaccines. 2022;10(10):1664.
- 15. Leroux-Roels I, Waerlop G, Tourneur J, De Boever F, Maes Č, Bruhwyler J, et al. Randomized, Double-Blind, Reference-Controlled, Phase 2a Study Evaluating the Immunogenicity and Safety of OVX836, A Nucleoprotein-Based Influenza Vaccine. Frontiers in Immunology. 2022;13((Leroux-Roels, Waerlop, De Boever, Maes, Leroux-Roels) Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium(Tourneur, Bruhwyler, Guyon-Gellin, Moris, Del Campo, Willems, Le Vert, Nicolas) OSIVAX, Lyon, France):852904.
- 16. Mir H, Haq I, Koul PA. Poor vaccine effectiveness against influenza b-related severe acute respiratory infection in a temperate north Indian state (2019-2020): A call for further data for possible vaccines with closer match. Vaccines. 2021;9(10):1094.
- 17. Neuzil KM, Anderson EJ, Frenck RW, Frey SE, Walter EB, Rupp R, et al. Safety and Immunogenicity of Influenza A/H5N8 Virus Vaccine in Healthy Adults: Durability and Cross-reactivity of Antibody Responses. Clinical Infectious Diseases: an official publication of the Infectious Diseases Society of America. 2023 ((Neuzil, Rotrosen, Ortiz) Center for Vaccine Development and Global Health, University of Maryland, Baltimore, MD, United States (Anderson) Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, United States (Frenck, Brad).
- 18. Ritveeradej E, Boonnak K, Yoowannakul S. Efficacy of double-dose influenza vaccine with a booster compared with standard dose in hemodialysis patients: Randomized controlled trial. Journal of the American Society of Nephrology. 2020;31((Ritveeradej, Yoowannakul) Bhumibol Adulyadej Hospital, Bangkok, Thailand(Boonnak) Mahidol University, Faculty of Tropical Medicine, Bangkok, Thailand):363.
- 19. Shasha D, Valinsky L, Hershkowitz Sikron F, Glatman-Freedman A, Mandelboim M, Toledano A, et al. Quadrivalent versus trivalent influenza vaccine: clinical outcomes in two influenza seasons, historical cohort study. Clinical Microbiology and Infection. 2020;26(1):101-6.
- 20. Shinde V, Cai R, Plested J, Cho I, Fiske J, Pham X, et al. Induction of Cross-Reactive Hemagglutination Inhibiting Antibody and Polyfunctional CD4+ T-Cell Responses by a Recombinant Matrix-M-Adjuvanted Hemagglutinin Nanoparticle Influenza Vaccine. Clinical Infectious Diseases. 2021;73(11):E4278-E87.
- 21. Shinde V, Cho I, Plested JS, Agrawal S, Fiske J, Cai R, et al. Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial. The Lancet Infectious Diseases. 2022;22(1):73-84.

- 22. Teh B, Leung V, Mordant F, Sullivan S, Joyce T, Harrison S, et al. A randomised trial of two 2-dose influenza vaccination strategies for patients following autologous haematopoietic stem cell transplantation. HemaSphere. 2020;4(Supplement 1):116-7.
- 23. Teh BW, Leung VKY, Mordant FL, Sullivan SG, Joyce T, Harrison SJ, et al. A randomized trial of two 2-dose influenza vaccination strategies for patients following autologous hematopoietic stem cell transplantation. Clinical Infectious Diseases. 2021;73(11):E4269-E77.
- 24. Thompson MG, Soto G, Peretz A, Newes-Adeyi G, Yoo YM, Hirsch A, et al. Influenza vaccine effectiveness within prospective cohorts of healthcare personnel in Israel and Peru 2016-2019. Vaccine. 2021;39(47):6956-67.
- 25. Vanni T, da Graca Salomao M, Viscondi JYK, Braga PE, da Silva A, de Oliveira Piorelli R, et al. A randomized, double-blind, non-inferiority trial comparing the immunogenicity and safety of two seasonal inactivated influenza vaccines in adults. Vaccine. 2023;41(22):3454-60.
- 26. Watanabe A, Nishida S, Burcu T, Shibahara T, Kusakabe T, Kuroda E, et al. Safety and immunogenicity of a quadrivalent seasonal influenza vaccine adjuvanted with hydroxypropyl-beta-cyclodextrin: A phase 1 clinical trial. Vaccine. 2022;40(31):4150-9.
- 27. Winokur P, El Sahly HM, Mulligan MJ, Frey SE, Rupp R, Anderson EJ, et al. Immunogenicity and safety of different dose schedules and antigen doses of an MF59-adjuvanted H7N9 vaccine in healthy adults aged 65 years and older. Vaccine. 2021;39(8):1339-48.
- 28. Zheng C, Duffy J, Liu ILA, Sy LS, Chen W, Qian L, et al. Risk for Shoulder Conditions After Vaccination: A Population-Based Study Using Real-World Data. Annals of Internal Medicine. 2022;175(5):634-43.

Wrong study design (n=25)

- 1. Abbasi J. Pfizer Launches Phase 1 mRNA Flu Vaccine Trial. JAMA Journal of the American Medical Association. 2021;326(18):1784.
- 2. Al Qahtani AA, Selim M, Hamouda NH, Al Delamy AL, Macadangdang C, Al Shammari KH, Al Shamary SF. Seasonal influenza vaccine effectiveness among health-care workers in Prince Sultan Military Medical City, Riyadh, KSA, 2018-2019. Human Vaccines and Immunotherapeutics. 2020 ((Al Qahtani, Selim, Hamouda, Al Delamy, Macadangdang, Al Shammari, Al Shamary) Preventive Medicine Division, Family and Community Medicine Administration, Prince Sultan Military Medical City, Riyadh, Saudi Arabia(Selim) Department of Public Health and Com):1-5.
- 3. Al Qahtani AA, Selim M, Hamouda NH, Al Delamy AL, Macadangdang C, Al Shammari KH, Al Shamary SF. Seasonal influenza vaccine effectiveness among health-care workers in Prince Sultan Military Medical City, Riyadh, KSA, 2018-2019. Human Vaccines & Immunotherapeutics. 2021;17(1):119-23.
- 4. Ando S. Estimation of the effectiveness of quadrivalent influenza vaccines by distinguishing between influenza a (H1N1) pdm09 and Influenza A (H3N2) using rapid influenza diagnostic tests during the 2018-2019 season. Internal Medicine. 2020;59(7):933-40.
- 5. 'Soon even flu vaccines based on mRNA? Moderna and Sanofi start phase I trial'. Deutsche Apotheker Zeitung. 2021;161(28):A24.
- 6. Bellino S, Piovesan C, Bella A, Rizzo C, Pezzotti P, Ramigni M. Determinants of vaccination uptake, and influenza vaccine effectiveness in preventing deaths and hospital admissions in the elderly population; Treviso, Italy, 2014/2015-2016/2017 seasons. Human Vaccines and Immunotherapeutics. 2020;16(2):301-12.
- 7. Bhatt AS, Vardeny O, Udell JA, Joseph J, Kim K, Solomon SD. Influenza vaccination: a 'shot' at INVESTing in cardiovascular health. European Heart Journal. 2021;42(20):2015-8.
- Bianchini M, Wright GC, Anderson HD, Perraillon MC, Lindrooth RC. Impact of High-Dose Vs Standard-Dose Influenza Vaccine on Respiratory Hospitalizations Among Adults. Value in Health. 2022;25(7 Supplement):S303.
- 9. Burgess T, Richard SA, Collins L, Spooner C, Seshadri S, Schofield C, et al. Pragmatic Assessment of Influenza Vaccine Effectiveness in the Department of Defense (PAIVED): Updates from Year 4 of a Multi-site Trial. Open Forum Infectious Diseases. 2022;9(Supplement 2):S898-S9.
- 10. Dingermann T. Adjuvanted and high-dose: Comparison of influenza vaccines in the elderly. Pharmazeutische Zeitung. 2022;167(23):36-9.
- 11. Fallani E, Orsi A, Signori A, Icardi G, Domnich A. An exploratory study to assess patterns of influenza- and pneumonia-related mortality among the Italian elderly. Human Vaccines and Immunotherapeutics. 2021;17(12):5514-21.
- 12. Fruhwein M, Schelling J, Wahle K, Beier D, Kwetkat A, Schwarz TF. Enhanced targeted influenza vaccines New evidence shows higher effectiveness in older adults. Deutsche Medizinische Wochenschrift. 2023;148(9):556-62.
- 13. Grohskopf LA, Blanton LH, Ferdinands JM, Chung JR, Broder KR, Talbot HK, et al. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices United States, 2022–23 Influenza Season. MMWR Recommendations and reports: Morbidity and mortality weekly report Recommendations and reports. 2022;71(1):1-28.
- 14. Hollingsworth R, Palmu A, Pepin S, Dupuy M, Shrestha A, Jokinen J, et al. Effectiveness of the quadrivalent high-dose influenza vaccine for prevention of cardiovascular and respiratory events in people aged 65 years

- and above: Rationale and design of a real-world pragmatic randomized clinical trial. American Heart Journal. 2021;237 ((Hollingsworth, Samson) Global Medical Affairs, Sanofi Pasteur, Swiftwater, PA, United States (Palmu, Syrjanen) Finnish Institute for Health and Welfare, Tampere, Finland (Pepin, De Bruijn) Global Clinical Sciences, Sanofi Pasteur, Marcy L'Etoile, France (Du):54-61.
- 15. Kamath A, Maity N, Nayak MA. Facial Paralysis Following Influenza Vaccination: A Disproportionality Analysis Using the Vaccine Adverse Event Reporting System Database. Clinical Drug Investigation. 2020;40(9):883-9.
- Lee H, Kim HJ, Choe YJ, Shin JY. Signals and trends of Guillain-Barre syndrome after the introduction of liveattenuated vaccines for influenza in the US and South Korean adverse event reporting systems. Vaccine. 2020;38(34):5464-73.
- 17. Lee IT, Nachbagauer R, Ensz D, Schwartz H, Carmona L, Schaefers K, et al. Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in healthy adults: interim analysis. Nature Communications. 2023;14(1):3631.
- Lucero-Obusan CA, Schirmer P, Oda G, Holodniy M. Influenza Surveillance in the Veterans Health Administration (VHA): 2020-2021 Season. Open Forum Infectious Diseases. 2021;8(SUPPL 1):S803.
- 19. Lungu M, Telehuz A, Niculet E, Voinescu CD, Elkan EM, Trifan A, et al. Recurrent Guillain-Barre syndrome after administration of influenza vaccine. Cases reports and update of literature data. Acta Medica Mediterranea. 2021;37(1):457-60.
- 20. Moro PL, Woo EJ, Marquez P, Cano M. Monitoring the safety of high-dose, trivalent inactivated influenza vaccine in the vaccine adverse event reporting system (VAERS), 2011–2019. Vaccine. 2020;38(37):5923-6.
- 21. Panatto D, Haag M, Lai PL, Tomczyk S, Amicizia D, Lino MM. Enhanced Passive Safety Surveillance (EPSS) confirms an optimal safety profile of the use of MF59-adjuvanted influenza vaccine in older adults: Results from three consecutive seasons. Influenza and other Respiratory Viruses. 2020;14(1):61-6.
- 22. Schmader KE, Liu CK, Flannery B, Rountree W, Auerbach H, Barnett ED, et al. Immunogenicity of adjuvanted versus high-dose inactivated influenza vaccines in older adults: a randomized clinical trial. Immunity and Ageing. 2023;20(1):30.
- 23. Tsai SY, Yeh TY, Chiu NC, Huang CT. National safety surveillance of quadrivalent recombinant influenza vaccine in Taiwan during NH 20/21. Vaccine. 2022;40(26):3701-4.
- 24. Valeri M, Wang Z, Armstrong L, Liu B. High-dose quadrivalent influenza vaccine for older populations. Medicine Today. 2022;23(4):61-3.
- 25. Woo EJ, Moro PL. Postmarketing safety surveillance of high-dose quadrivalent influenza vaccine: Reports to the Vaccine Adverse Event Reporting System. Vaccine. 2022;40(7):1026-30.

Wrong comparator (n=16)

- 1. Carreras JJ, Lluch JA, Taboada JA, Pastor-Villalba E, Nartallo-Penas V, Diez-Domingo J. Adverse events in pregnant women with the tetravalent influenza vaccine obtained from cell cultures. Enfermedades Infecciosas y Microbiologia Clinica. 2022 ((Carreras, Diez-Domingo) Area de Investigacion en Vacunas, FISABIO Salud Publica, Valencia, Spain (Lluch, Pastor-Villalba) Direccion General de Salud Publica y Adicciones, Conselleria de Sanitat Universal i Salut Publica, Valencia (Comunidad Valenciana)).
- 2. Essink B, Fierro C, Rosen J, Figueroa AL, Zhang B, Verhoeven C, et al. Immunogenicity and safety of MF59-adjuvanted quadrivalent influenza vaccine versus standard and alternate B strain MF59-adjuvanted trivalent influenza vaccines in older adults. Vaccine. 2020;38(2):242-50.
- 3. Fabiani M, Volpe E, Faraone M, Bella A, Pezzotti P, Chini F. Effectiveness of influenza vaccine in reducing influenza-associated hospitalizations and deaths among the elderly population; Lazio region, Italy, season 2016-2017. Expert Review of Vaccines. 2020;19(5):479-89.
- 4. Fujimori M, Hasegawa S, Sasaoka S, Iguchi K, Nakamura M. A study of the association between seasonal influenza vaccines and the increased risk of Guillain-Barre syndrome using Vaccine Adverse Event Reporting System, 2018-2019. Pharmazie. 2021;76(9):437-43.
- Fujimori M, Nakamura M. Association between seasonal influenza vaccines and the increased risk of acute disseminated encephalomyelitis, estimated using the Vaccine Adverse Event Reporting System. Die Pharmazie. 2022;77(7):262-9.
- 6. Gandhi-Banga S, Wague S, Shrestha A, Syrkina O, Talanova O, Nissila M, et al. Enhanced passive safety surveillance of high-dose and standard-dose quadrivalent inactivated split-virion influenza vaccines in Germany and Finland during the influenza season 2021/22. Influenza and other Respiratory Viruses. 2023;17(1):e13071.
- Kato M, Kunkel T, Bram D, Newman J, Lopez A, Santana P, et al. Effectiveness of high dose influenza vaccine in hiv-positive patients for the winter 2017-2018 season. Open Forum Infectious Diseases. 2020;7(SUPPL 1):S36-S7.
- 8. Mira-Iglesias A, Lopez-Labrador FX, Garcia-Rubio J, Mengual-Chulia B, Tortajada-Girbes M, Mollar-Maseres J, et al. Influenza vaccine effectiveness and waning effect in hospitalized older adults. Valencia region, Spain, 2018/2019 season. International Journal of Environmental Research and Public Health. 2021;18(3):1-17.

- 9. Munoz FM, Patel SM, Jackson LA, Swamy GK, Edwards KM, Frey SE, et al. Safety and immunogenicity of three seasonal inactivated influenza vaccines among pregnant women and antibody persistence in their infants. Vaccine. 2020;38(33):5355-63.
- 10. Peikert A, Claggett BL, Kim KM, Udell JA, Joseph J, Desai AS, et al. Association of Post-Vaccination Adverse Reactions After Influenza Vaccine With Mortality and Cardiopulmonary Outcomes in Patients With High-Risk Cardiovascular Disease: The INVESTED Trial. Circulation. 2022;146(Supplement 1).
- 11. Pebody RG, Whitaker H, Ellis J, Andrews N, Marques DFP, Cottrell S, et al. End of season influenza vaccine effectiveness in primary care in adults and children in the United Kingdom in 2018/19. Vaccine. 2020;38(3):489-97.
- 12. Peikert A, Claggett BL, Kim K, Udell JA, Joseph J, Desai AS, et al. Association of post-vaccination adverse reactions after influenza vaccine with mortality and cardiopulmonary outcomes in patients with high-risk cardiovascular disease: the INVESTED trial. European Journal of Heart Failure. 2023;25(2):299-310.
- Redlberger-Fritz M, Kundi M, Popow-Kraupp T. Heterogeneity of Circulating Influenza Viruses and Their Impact on Influenza Virus Vaccine Effectiveness During the Influenza Seasons 2016/17 to 2018/19 in Austria. Frontiers in Immunology. 2020;11 ((Redlberger-Fritz, Popow-Kraupp) Centre of Virology, Medical University Vienna, Vienna, Austria (Kundi) Department of Environmental Health, Medical University Vienna, Vienna, Austria):434.
- 14. Rizzo C, Gesualdo F, Loconsole D, Pandolfi E, Bella A, Orsi A, et al. Moderate vaccine effectiveness against severe acute respiratory infection caused by a (H1N1)pdm09 influenza virus and no effectiveness against a (H3N2)) influenza virus in the 2018/2019 season in Italy. Vaccines. 2020;8(3):1-10.
- 15. Winokur PL, Hegmann TE, Keitel WA, Bernstein DI, Frey SE, Bryant C. Safety and Immunogenicity of a monovalent inactivated influenza A/H5N8 virus vaccine given with and without AS03 or MF59 adjuvants in healthy adults. Clinical Infectious Diseases: an official publication of the Infectious Diseases Society of America. 2023((Winokur, Hegmann) Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States (Keitel) Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, USA).
- 16. Zimmerman RK, Patricia Nowalk M, Dauer K, Clarke L, Raviotta JM, Balasubramani GK. Vaccine effectiveness of recombinant and standard dose influenza vaccines against influenza related hospitalization using a retrospective test-negative design. Vaccine. 2023.

Duplicate (n=5)

- 1. Colmegna I, Useche ML, Rodriguez K, McCormack D, Alfonso G, Patel A, et al. Immunogenicity and safety of high-dose versus standard-dose inactivated influenza vaccine in rheumatoid arthritis patients: a randomised, double-blind, active-comparator trial. The Lancet Rheumatology. 2020;2(1):e14-e23.
- 2. Cowling BJ, Perera RAPM, Valkenburg SA, Leung NHL, Iuliano AD, Tam YH, et al. Comparative immunogenicity of several enhanced influenza vaccine options for older adults: A randomized, controlled trial. Clinical Infectious Diseases. 2020;71(7):1704-14.
- 3. Cowling BJ, Thompson MG, Ng TWY, Fang VJ, Perera RAPM, Leung NHL, et al. Comparative reactogenicity of enhanced influenza vaccines in older adults. Journal of Infectious Diseases. 2020;222(8):1383-91.
- 4. Pebody R, Whitaker H, Zhao H, Andrews N, Ellis J, Donati M, Zambon M. Protection provided by influenza vaccine against influenza-related hospitalisation in >=65 year olds: Early experience of introduction of a newly licensed adjuvanted vaccine in England in 2018/19. Vaccine. 2020;38(2):173-9.
- 5. Sanchez L, Matsuoka O, Inoue S, Inoue T, Meng Y, Nakama T, et al. Immunogenicity and safety of high-dose quadrivalent influenza vaccine in Japanese adults >=65 years of age: a randomized controlled clinical trial. Human Vaccines and Immunotherapeutics. 2020;16(4):858-66.

Wrong display of data (n=2)

- De Lusignan S, Tsang RSM, Amirthalingam G, Akinyemi O, Sherlock J, Tripathy M, et al. Adverse events of interest following influenza vaccination, a comparison of cell culture-based with egg-based alternatives: English sentinel network annual report paper 2019/20. The Lancet Regional Health Europe. 2021;2(101777707):100029.
- Stapleton JT, Wagner N, Tuetken R, Bellamy AR, Hill H, Kim S, Winokur PL. High dose trivalent influenza vaccine compared to standard dose vaccine in patients with rheumatoid arthritis receiving TNF-alpha inhibitor therapy and healthy controls: Results of the DMID 10-0076 randomized clinical trial. Vaccine. 2020;38(23):3934-41.

Abstract meanwhile published as manuscript (n=1)

1. Liu C, Schmader K, Harrington T, Roundtree W, Auerbach H, Walter E, et al. Comparative safety of adjuvanted versus high-dose inactivated influenza vaccines in older adults. Journal of the American Geriatrics Society. 2020;68(SUPPL 1):S140.

Wrong publication type (n=1)

1. Fischer L, O'Brien D, Vasey J, Sylvester GC, Mansi JA. Relative effectiveness of AIIV3 versus IIV4 and HD-IIV3 in preventing influenza-related medical encounters in adults >=65 years of age at high risk for influenza complications during the U.S. 2017-2018 and 2018-2019 influenza seasons. Open Forum Infectious Diseases. 2020;7(SUPPL 1):S844.

Annex 3. Risk of bias assessment

Additional outcomes in NRSI safety-studies

Table 25. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: anaphylaxis

Risk of bias domains D₁ D2 D3 D4 D₅ D₆ D7 Overall Layton 2020

Domains:

D1: Bias due to confounding.

D2: Bias due to selection of participants.

D3: Bias in classification of interventions.

D4: Bias due to deviations from intended interventions.

D5: Bias due to missing data.

D6: Bias in measurement of outcomes.

D7: Bias in selection of the reported result.

Judgement

Moderate

Low

Judgement

Low

Moderate

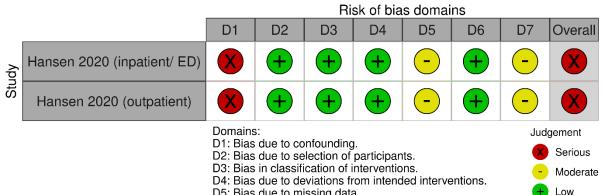
Table 26. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: angioedema

Domains:

D1: Bias due to confounding.

D2: Bias due to selection of participants.

D3: Bias in classification of interventions.


D4: Bias due to deviations from intended interventions.

D5: Bias due to missing data.

D6: Bias in measurement of outcomes.

D7: Bias in selection of the reported result.

Table 27. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: asthma

D5: Bias due to missing data.

D6: Bias in measurement of outcomes.

D7: Bias in selection of the reported result.

Table 18. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: death

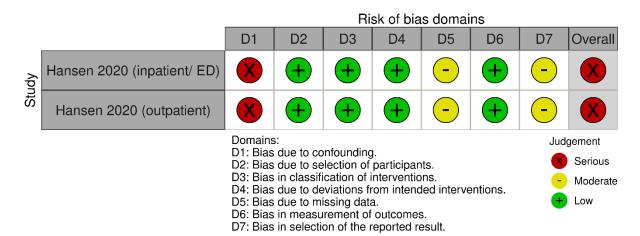


Table 29. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: encephalopathy

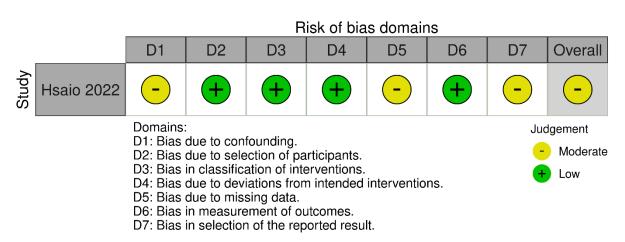


Table 30. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: idiopathic thrombocytopenic purpura/Henoch-Schönlein purpura

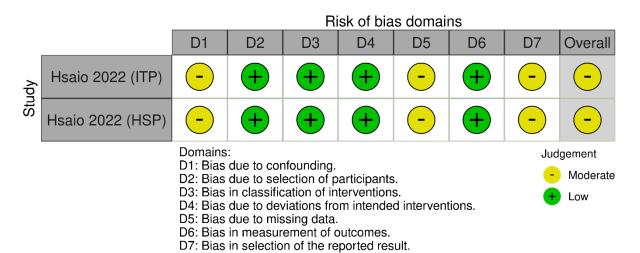


Table 31. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: narcolepsy/cataplexy

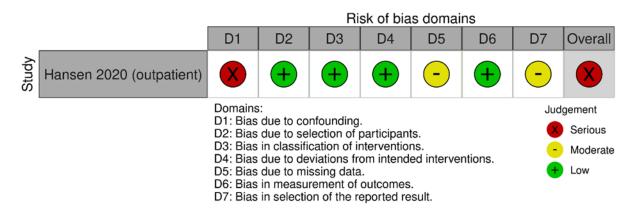


Table 32. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: non-infectious pleural effusion

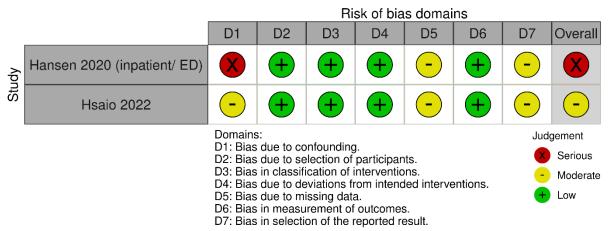


Table 33. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: acute non-infectious pericarditis

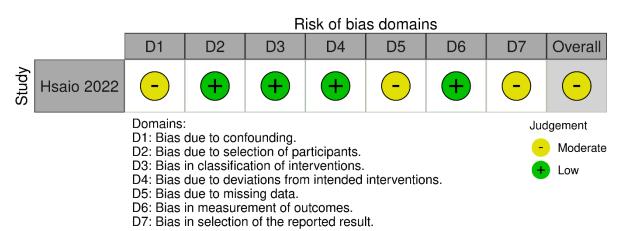



Table 194. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: seizure/convulsion

Risk of bias domains D4 D₅ D6 D7

Domains:

D1: Bias due to confounding.

D2: Bias due to selection of participants.

D3: Bias in classification of interventions.

D4: Bias due to deviations from intended interventions.

D5: Bias due to missing data.

D6: Bias in measurement of outcomes.

D7: Bias in selection of the reported result.

Table 35. Risk of bias in NRSI on safety (assessed with ROBINS-I); outcome: short-term mortality

Risk of bias domains

		D1	D2	D3	D4	D5	D6	D7	Overall
Study	Layton 2020	-	+	+	+	-	+	-	-

Domains:

D1: Bias due to confounding.

D2: Bias due to selection of participants.

D3: Bias in classification of interventions.

D4: Bias due to deviations from intended interventions.

D5: Bias due to missing data.

D6: Bias in measurement of outcomes.

D7: Bias in selection of the reported result.

Judgement

Judgement

Moderate

Low

Moderate

Low

RCT safety-studies

Table 36. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: AESI

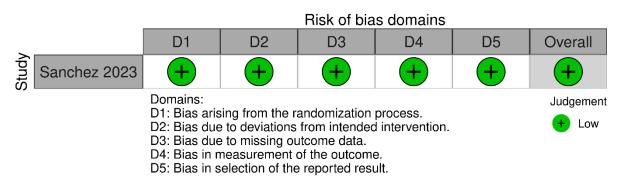
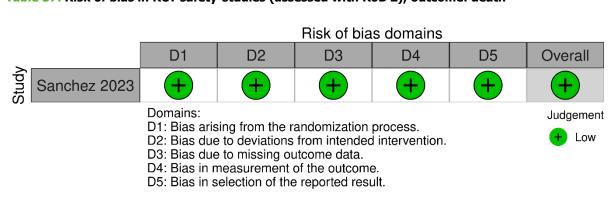



Table 37. Risk of bias in RCT safety-studies (assessed with RoB 2); outcome: death

Annex 4. Funnel plots

For comparisons of outcomes with 10 or more studies, funnel plots were constructed and visually inspected for small study effects. No evidence of publication bias was detected in any of the plots.

MF59-adjuvanted influenza vaccine versus standard influenza vaccine

Figure 17. Funnel plot for safety outcome headache after vaccination with MF59-adjuvanted influenza vaccine versus standard influenza vaccine (10 studies)

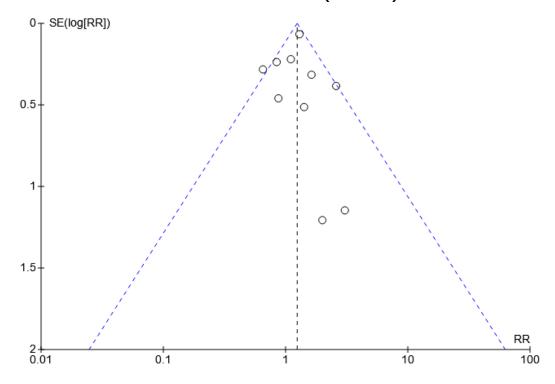


Figure 18. Funnel plot for safety outcome pain after vaccination with MF59-adjuvanted influenza vaccine versus standard influenza vaccine (12 studies)

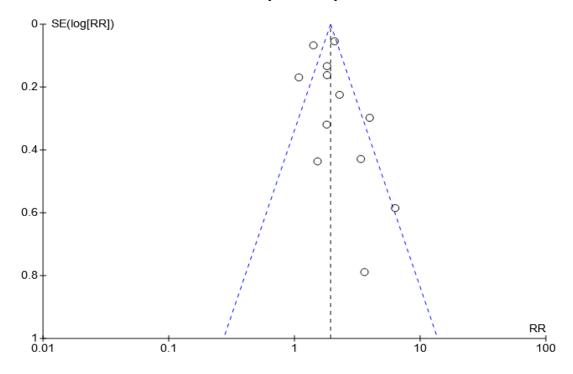


Figure 19. Funnel plot for safety outcome headache after vaccination with high-dose influenza vaccine versus standard influenza vaccine (11 studies)

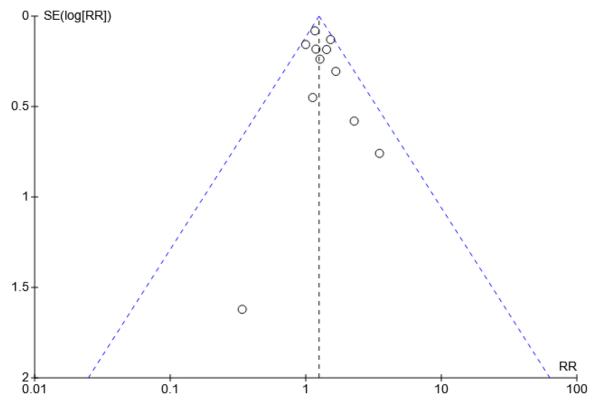
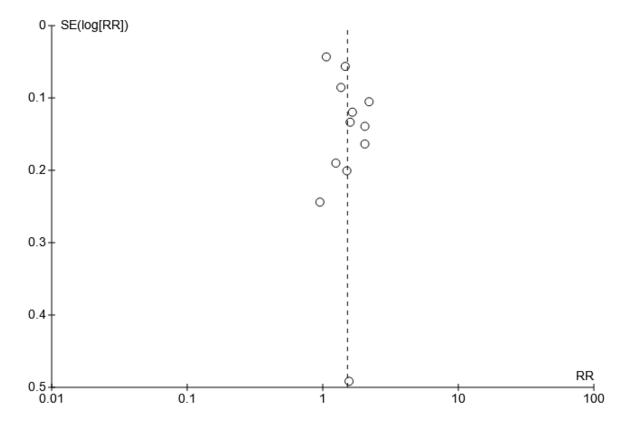



Figure 20. Funnel plot for safety outcome pain after vaccination with high-dose influenza vaccine versus standard influenza vaccine (12 studies)

Annex 5. Random effects models

Figure 1621. Relative risk of headache after vaccination with MF59-adjuvanted influenza vaccine versus standard influenza vaccine (random-effects model)

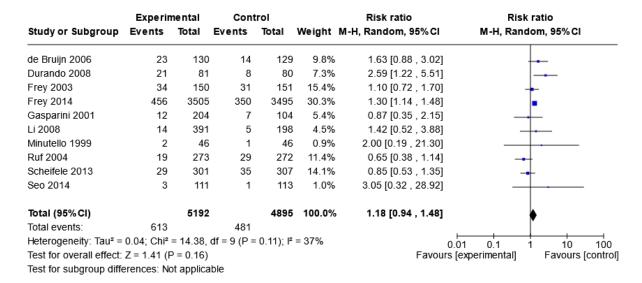


Figure 22. Relative risk of fever after vaccination with MF59-adjuvanted influenza vaccine versus standard influenza vaccine (random-effects model)

	Experin	ne ntal	Cont	trol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Cowling 2019	16	508	7	508	12.9%	2.29 [0.95 , 5.51]	-
de Lusignan 2021	2	273	4	272	4.3%	0.50 [0.09, 2.70]	
Durando 2008	23	81	4	80	10.3%	5.68 [2.06 , 15.68]	
Frey 2003	1	150	0	151	1.3%	3.02 [0.12 , 73.54]	
Frey 2014	175	3505	105	3495	42.6%	1.66 [1.31 , 2.11]	-
Gasparini 2001	4	204	2	104	4.3%	1.02 [0.19 , 5.48]	
Li 2008	62	391	15	198	24.4%	2.09 [1.22 , 3.58]	
Minutello 1999	0	46	0	46		Not estimable	
Seo 2014	0	111	0	113		Not estimable	
Total (95% CI)		5269		4967	100.0%	1.95 [1.35 , 2.80]	•
Total events:	283		137				•
Heterogeneity: Tau ² =	0.07; Chi2	= 8.72, d	f = 6 (P = 0	0.19); l² =	= 31%	0.0	1 0.1 1 10 100
Test for overall effect:	Z = 3.59 (F	P = 0.000	3)				experimental] Favours [control]
Test for subgroup diffe	erences: No	ot applica	ible				

Figure 23. Relative risk of pain after vaccination with MF59-adjuvanted influenza vaccine versus standard influenza vaccine (random-effects model)

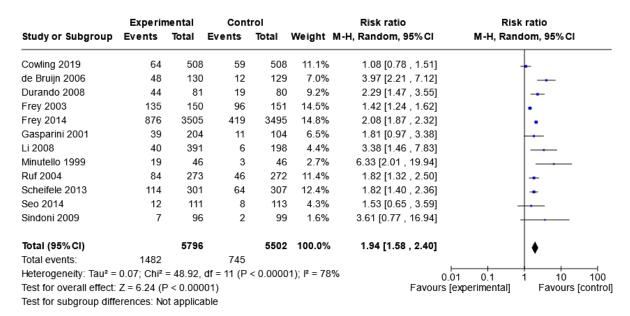


Figure 24. Relative risk of swelling after vaccination with MF59-adjuvanted influenza vaccine versus standard influenza vaccine (random-effects model)

	Experin	ne ntal	Cont	rol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Cowling 2019	47	508	43	508	36.1%	1.09 [0.74 , 1.62]	•
Frey 2014	35	3505	35	3495	29.8%	1.00 [0.63 , 1.59]	+
Gasparini 2001	11	391	2	198	4.4%	2.79 [0.62 , 12.44]	 • • • • • • • • • • • • • • • • • • •
Scheifele 2013	36	301	19	307	25.1%	1.93 [1.13 , 3.29]	-
Seo 2014	3	111	4	113	4.6%	0.76 [0.17 , 3.33]	
Total (95% CI)		4816	;	4621	100.0%	1.26 [0.91 , 1.74]	•
Total events:	132		103				•
Heterogeneity: Tau ² =	0.04; Chi ²	= 5.44, d	If = 4 (P = 0	0.25); l² =	= 26%	0.0	01 0.1 1 10 100
Test for overall effect:	Z = 1.39 (F	P = 0.17)					experimental] Favours [control]
Test for subgroup diffe	erences: No	ot applica	able				

Figure 25. Relative risk of headache after vaccination with high-dose influenza vaccine versus standard influenza vaccine (random-effects model)

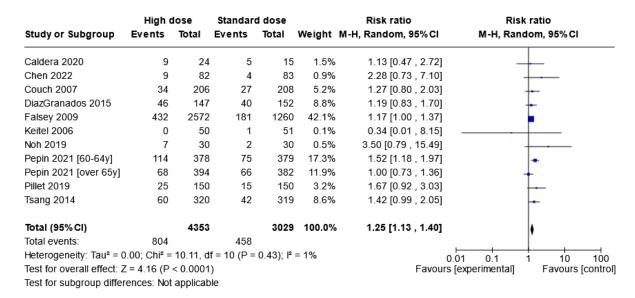


Figure 26. Relative risk of fever after vaccination with high-dose influenza vaccine versus standard influenza vaccine (random-effects model)

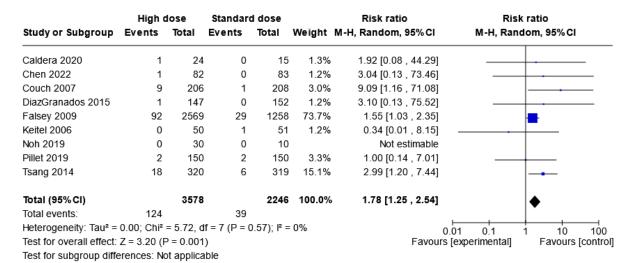


Figure 27. Relative risk of pain after vaccination with high-dose influenza vaccine versus standard influenza vaccine (random-effects model)

	High o	iose	Standar	t dose		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Caldera 2020	10	24	4	15	2.4%	1.56 [0.60 , 4.10]	-
Chen 2022	37	82	30	83	7.3%	1.25 [0.86 , 1.81]	 -
Couch 2007	83	206	41	208	8.1%	2.04 [1.48 , 2.82]	-
DiazGranados 2015	112	147	85	152	10.3%	1.36 [1.15 , 1.61]	•
Falsey 2009	915	2572	306	1260	10.9%	1.46 [1.31 , 1.64]	
Keitel 2006	31	50	21	51	7.0%	1.51 [1.02 , 2.23]	-
Noh 2019	20	30	7	10	5.9%	0.95 [0.59 , 1.54]	+
Pepin 2021 [60-64y]	195	378	89	379	9.8%	2.20 [1.79 , 2.70]	-
Pepin 2021 [over 65y]	115	394	70	382	9.0%	1.59 [1.23 , 2.07]	-
Pillet 2019	96	150	58	150	9.4%	1.66 [1.31 , 2.09]	-
Sanchez 2023	546	1049	515	1051	11.1%	1.06 [0.98 , 1.16]	
Tsang 2014	119	320	58	319	8.8%	2.05 [1.56 , 2.69]	+
Total (95% CI)		5402		4060	100.0%	1.52 [1.29 , 1.80]	•
Total events:	2279		1284				'
Heterogeneity: Tau ² = 0	0.06; Chi ² =	78.92, d	f = 11 (P <	0.00001); l ² = 869	% 0 0	1 0.1 1 10 100
Test for overall effect: Z Test for subgroup differ	•		,			0.0	experimental] Favours [control

Figure 28. Relative risk of swelling after vaccination with high-dose influenza vaccine versus standard influenza vaccine (random-effects model)

	High (dose	Standar	d dose		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Caldera 2020	5	24	. 5	15	9.2%	0.63 [0.22 , 1.80]	
Chen 2022	8	82	2	83	5.2%	4.05 [0.89 , 18.50]	
Couch 2007	49	206	38	208	24.7%	1.30 [0.89 , 1.90]	-
DiazGranados 2015b	9	147	2	152	5.3%	4.65 [1.02 , 21.18]	-
Falsey 2009	165	2572	45	1260	26.4%	1.80 [1.30 , 2.48]	•
Noh 2019	4	30	0	10	1.7%	3.19 [0.19 , 54.64]	
Pillet 2019	18	150	2	150	5.7%	9.00 [2.13 , 38.11]	
Tsang 2014	46	320	24	319	21.8%	1.91 [1.20 , 3.05]	-
Total (95% CI)		3531		2197	100.0%	1.85 [1.27 , 2.71]	•
Total events:	304		118				•
Heterogeneity: Tau ² =	0.12; Chi ² :	= 14.35, (df = 7 (P =	0.05); l2:	= 51%	0	01 0.1 1 10 100
Test for overall effect:	Z = 3.18 (F	9 = 0.001)				[experimental] Favours [control]
Test for subgroup diffe	erences: No	t applica	ble				

Figure 29. Relative risk of headache after vaccination with cell-based influenza vaccine versus standard influenza vaccine (random-effects model)

	Experin	ne ntal	Cont	trol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Chen 2022	29	120	25	120	3.3%	1.16 [0.72 , 1.86]	ı +
Ehrlich 2012a	389	2842	39	366	7.5%	1.28 [0.94 , 1.75]	ı -
Frey 2010	566	3776	546	3638	61.7%	1.00 [0.90 , 1.11]	l •
Halperin 2002	128	522	56	209	9.9%	0.92 [0.70 , 1.20]	ı +
Song 2015	130	1045	9	104	1.7%	1.44 [0.75 , 2.74]	ı - -
Szymczakiewicz-Multanowska 2009	150	1330	149	1324	15.9%	1.00 [0.81 , 1.24]	l
Total (95% CI)		9635		5761	100.0%	1.02 [0.94 , 1.11]	ı •
Total events:	1392		824				
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 4$.30, df = 5	(P = 0.51); I² = 0%				0.01 0.1 1 10 100
Test for overall effect: Z = 0.48 (P =	0.63)					Favou	ırs [experimental] Favours [control]
Test for subgroup differences: Not a	pplicable						

Figure 30. Relative risk of fever after vaccination with cell-based influenza vaccine versus standard influenza vaccine (random-effects model)

	Experin	ne ntal	Con	trol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Ehrlich 2012a	61	2842	3	366	10.4%	2.62 [0.83 , 8.30]	
Frey 2010	34	3776	33	3638	61.0%	0.99 [0.62 , 1.60]	1 📥
Groth 2009	0	120	1	120	1.4%	0.33 [0.01 , 8.10]	1 ———
Halperin 2002	10	522	5	209	12.3%	0.80 [0.28 , 2.31]	1
Song 2015	0	1045	0	104		Not estimable	
Szymczakiewicz-Multanowska 2009	7	1330	10	1324	15.0%	0.70 [0.27 , 1.83]	1 -
Total (95% CI)		9635		5761	100.0%	1.00 [0.69 , 1.45]	ı •
Total events:	112		52				Ĭ
Heterogeneity: Tau ² = 0.00; Chi ² = 3	.91, df = 4	(P = 0.42)	2); 2 = 0%				0.01 0.1 1 10 100
Test for overall effect: Z = 0.00 (P = 1.00)						Favou	urs [experimental] Favours [control]
Test for subgroup differences: Not a	pplicable						

Figure 31. Relative risk of pain after vaccination with cell-based influenza vaccine versus standard influenza vaccine (random-effects model)

	Experimental Con		ntrol Risk ra		Risk ratio	Risk ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Random, 95% CI
Ehrlich 2012a	744	2842	99	366	23.9%	0.97 [0.81 , 1.1	6]
Frey 2010	1133	3776	873	3638	35.4%	1.25 [1.16 , 1.3	5]
Groth 2009	29	120	25	120	7.1%	1.16 [0.72 , 1.8	6] 🚣
Song 2015	304	1045	27	104	11.8%	1.12 [0.80 , 1.5	7] 🚣
Szymczakiewicz-Multanowska 2009	205	1330	143	1324	21.8%	1.43 [1.17 , 1.7	4]
Total (95% CI)		9113		5552	100.0%	1.19 [1.03 , 1.3	7]
Total events:	2415		1167				ľ
Heterogeneity: Tau ² = 0.01; Chi ² = 9	.49, df = 4	(P = 0.05)	5); l² = 58%			0.01 0.1 1 10 100	
Test for overall effect: Z = 2.44 (P =	Favo	ours [experimental] Favours [control					
Test for subgroup differences: Not a							

Figure 32. Relative risk of swelling after vaccination with cell-based influenza vaccine versus standard influenza vaccine (random-effects model)

	Experin	ne ntal	Cont	trol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% CI
Ehrlich 2012a	117	2842	8	366	8.3%	1.88 [0.93 , 3.82	2]
Frey 2003	225	3776	179	3638	43.4%	1.21 [1.00 , 1.47	7]
Groth 2009	17	120	26	120	12.4%	0.65 [0.37 , 1.14	ı) -
Halperin 2002	41	522	16	209	12.4%	1.03 [0.59 , 1.79	9] 📥
Song 2015	24	1045	3	104	3.2%	0.80 [0.24 , 2.60	0] —
Szymczakiewicz-Multanowska 2009	48	1330	44	1324	20.2%	1.09 [0.73 , 1.62	2] +
Total (95% CI)		9635		5761	100.0%	1.10 [0.88 , 1.37	ı .
Total events:	472		276				-
Heterogeneity: Tau ² = 0.02; Chi ² = 6	.72, df = 5	(P = 0.24	l); l² = 26%	, 0			0.01 0.1 1 10 100
Test for overall effect: Z = 0.86 (P =	Favo	urs [experimental] Favours [control]					
Test for subgroup differences: Not a							

Figure 33. Relative risk of headache after vaccination with recombinant influenza vaccine versus standard influenza vaccine (random-effects model)

	Experin	ne ntal	Cont	rol		Risk ratio	Risk ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Baxter 2011	13	300	63	302	17.6%	0.21 [0.12 , 0.37]		
Dunkle 2017a	143	4328	145	4344	23.7%	0.99 [0.79 , 1.24]	+	
Dunkle 2017b	202	994	70	332	23.5%	0.96 [0.76 , 1.23]	+	
Keitel 2009	48	436	43	433	21.0%	1.11 [0.75 , 1.64]	+	
Treanor 2006	14	100	10	99	14.3%	1.39 [0.65 , 2.97]	-	
Total (95% CI)		6158		5510	100.0%	0.80 [0.52 , 1.24]	•	
Total events:	420		331				1	
Heterogeneity: Tau ² =	0.20; Chi2	= 28.60,	df = 4 (P <	0.00001); l ² = 869	%	0.01 0.1 1 10 100	
Test for overall effect: Z = 0.98 (P = 0.33)							's [experimental] Favours [contro	
Test for subgroup diffe	erences: No	ot applica	ıble					

Figure 34. Relative risk of pain after vaccination with recombinant influenza vaccine versus standard influenza vaccine (random-effects model)

	Experin	ne ntal	Cont	trol		Risk ratio	Risk rati	0
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random,	95% CI
Baxter 2011	154	300	165	302	19.0%	0.94 [0.81 , 1.09]		
Cowling 2019	26	335	59	508	3.9%	0.67 [0.43 , 1.04]	-	
Dunkle 2017a	813	4307	950	4319	29.5%	0.86 [0.79, 0.93]		
Dunkle 2017b	367	996	121	332	17.4%	1.01 [0.86 , 1.19]	↓	
Izikson 2015	256	1314	287	1313	19.1%	0.89 [0.77, 1.04]		
Keitel 2009	96	436	100	433	10.2%	0.95 [0.75 , 1.22]	+	
Treanor 2006	15	100	6	99	1.0%	2.48 [1.00 , 6.12]		_
Total (95% CI)		7788		7306	100.0%	0.92 [0.84 , 1.00]		
Total events:	1727		1688				1	
Heterogeneity: Tau ² =	0.01; Chi ²	= 10.32,	df = 6 (P =	0.11); l²	= 42%		0.01 0.1 1	10 100
Test for overall effect:	Z = 1.90 (F	P = 0.06)				avours [control		
Test for subgroup diffe	erences: No	ot applica	ible					

Figure 35. Relative risk of swelling after vaccination with recombinant influenza vaccine versus standard influenza vaccine (random-effects model)

	Experin	ne ntal	Cont	trol		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Baxter 2011	25	200	30	302	19.4%	1.26 [0.76 , 2.07]	-
Cowling 2019	13	335	43	508	16.9%	0.46 [0.25 , 0.84]	
Dunkle 2017a	142	4307	115	4319	25.6%	1.24 [0.97 , 1.58]	•
Dunkle 2017b	49	996	10	332	15.5%	1.63 [0.84 , 3.19]	
Keitel 2009	31	436	43	433	20.9%	0.72 [0.46 , 1.11]	
Treanor 2006	0	100	3	99	1.7%	0.14 [0.01 , 2.70]	
Total (95% CI)		6374		5993	100.0%	0.94 [0.64 , 1.39]	•
Total events:	260		244				Ĭ
Heterogeneity: Tau ² =	0.14; Chi ²	= 15.84,	df = 5 (P =	0.007);	l² = 68%		0.01 0.1 1 10 100
Test for overall effect:	Z = 0.29 (F	P = 0.77			rs [experimental] Favours [control]		
Test for subgroup diffe	erences: No	ot applica	ıble				

Annex 6. Differences to study protocol

There are several differences between the study protocol and the current review:

- The literature search was restricted to Medline and Embase.
- Metanalysis was performed using RevMan Web and the Mantel-Haenszel method was used.
- For detection of possible publication bias (small study effects), visual inspection funnel plots were used.
- In order not to undermine the systematic character of this review, personal communication with investigators was only undertaken to clarify published study data. The PROSPERO protocol was changed accordingly on 4 December 2023.

European Centre for Disease Prevention and Control (ECDC)

Gustav III:s Boulevard 40 16973 Solna, Sweden

Tel. +46 858601000 ECDC.info@ecdc.europa.eu

www.ecdc.europa.eu

Follow ECDC on social media

Twitter: @ECDC_EU

Facebook: www.facebook.com/ECDC.EU

Linkedin: www.linkedin.com/company/ecdc/

